-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueDo You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
IPC APEX EXPO 2025: A Preview
It’s that time again. If you’re going to Anaheim for IPC APEX EXPO 2025, we’ll see you there. In the meantime, consider this issue of SMT007 Magazine to be your golden ticket to planning the show.
Technical Resources
Key industry organizations–all with knowledge sharing as a part of their mission–share their technical repositories in this issue of SMT007 Magazine. Where can you find information critical to your work? Odds are, right here.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
Sondrel Delivers Tape-out of Largest Chip Design
November 2, 2020 | SondrelEstimated reading time: 2 minutes
Sondrel has announced the tape-out of its largest chip design for a customer. This has taken a team of up to 200 engineers working on it simultaneously at times to design the 500 square millimetre chip that has over 30 billion transistors, 40 million flipflops, and 23 thousand pads for I/O, power and ground.
“This initially started out as a design for 28nm technology,” explained Stuart Vernon, Sondrel’s Senior Director of Physical Design. “However, it soon became apparent that, on 28nm, it would either be one very big chip, which would not have been cost effective, or it would have to be split into two connected chips, which would introduce parasitics and timing issues. So the decision was made to use the 16nm TSMC process node to enable the design to fit onto a single chip at a cost effective price point.”
Around a third of the floor plan of the chip is the block with the customer’s IP that handles the real-time image processing. Sondrel wrapped round that support blocks of Graphical Processor Unit, two Central Processor Units, on-chip cache memory, PCI and USB interfaces plus memory controllers to off-chip memory using over 7 kilometres of metal tracks on a chip the size of a postage stamp.
It would be impossible to design a chip of this complexity in one go as it has 300 million placeable logic cells and the placement tool can only handle 3 million at a time without the runtime becoming excessive. It was therefore divided into manageable-sized, functional blocks over four levels of a hierarchy structured like a pyramid. This enabled the design of the blocks to be divided between Sondrel teams that are located around the world. Once each block was finished, the big challenge was to bring them all together by creating abstract models of the lower blocks to provide input for the higher blocks so that the size of the part of design being implemented remained manageable. As the chip can run at up to 100 Watts, even the heat output of the different parts of the chip have to be allowed for in the design to prevent hotspots
Once all the component blocks had been implemented, the whole design was run as a complete unit on a dedicated computer farm consisting of 25 computers, each with 24 CPUs and 1.5 Terabytes of memory, and over 100 software licenses to perform physical validation checks, which took two days.
“We are one of the few digital design companies that can handle a design of this size and complexity, and we have several more nearing completion,” said Graham Curran, Sondrel’s CEO and Founder. “A key part of this is our experience of managing the logistics of having teams in seven different locations and co-ordinating their work. For example, our teams in India and China work in the evenings to maximise the overlap with our teams in Europe.”
Suggested Items
Siemens, TSMC Extend Collaboration to Drive Semiconductor Design Innovation
04/25/2025 | SiemensSiemens Digital Industries Software announced that the company has deepened longstanding collaboration with TSMC to drive innovation in semiconductor design and integration, enabling mutual customers to tackle the challenges of next-generation technologies.
Ansys Strengthens Collaboration with TSMC on Advanced Node Processes Certification and 3D-IC Multiphysics Design Solutions
04/24/2025 | PRNewswireThrough continued collaboration with TSMC, Ansys announced enhanced AI-assisted workflows for radio frequency (RF) design migration and photonic integrated circuits (PICs), and new certifications for its semiconductor solutions. Together,
Autodesk Donates $4.3 Million to Cornell University to Prepare students for an AI-powered future
04/24/2025 |Autodesk announced a $4.3 million gift to Cornell University’s College of Engineering and College of Architecture, Art, and Planning (AAP) to help prepare students for the future of work in an increasingly AI-driven world. The investment will fund a new Autodesk Cornell Engineering Design and Make Space in Upson Hall.
Driving Sustainability in PCB Design
04/24/2025 | Marcy LaRont, I-Connect007Filbert (Fil) Arzola is an electrical engineer at Raytheon. He’s smart, entertaining, and passionate about PCB design. As it turns out, he’s also passionate about “Mother Earth,” as he calls her. Born and raised in Southern California, he freely admits that he turns the water off when he brushes his teeth and yells at his brother for throwing batteries in the garbage. But when looking at the issue of sustainability and PCB design, he urges his audiences to ponder what sustainability looks like. Can PCB designers, he asks, make any impact on sustainability at all?
Real Time with... IPC APEX EXPO: Silicon Geometry's Signal Integrity Impact on PCBs
04/24/2025 | Marcy LaRont, I-Connect007At IPC APEX EXPO 2025, Kris Moyer addressed the importance of understanding the impact of silicon geometry reduction on signal integrity and PCB performance. Kris says signal integrity considerations are necessary for so many designs today, regardless of clock frequency. He discusses valuable insights from attendees regarding embedded resistor technology and the effects of radiation on smaller silicon features in aerospace applications.