Just Ask Tara Dunn: What Is the Thickest Flex Layer Available?
November 13, 2020 | I-Connect007 Editorial TeamEstimated reading time: 1 minute

First, we asked you to send in your questions for Happy Holden, Joe Fjelstad, John Mitchell, and others in our “Just Ask” series. Now, it’s Tara Dunn’s turn! Tara is the vice president of marketing and business development for Averatek. A regular Flex007 columnist, Tara discusses flexible circuits, rigid-flex, and rigid PCBs, as well as RF/microwave technology, microelectronics, and additive processes. She is also co-founder of Geek-a-Palooza and a show manager for the SMTA Additive Electronics TechXchange event. She has over 20 years of experience in the PCB industry. We hope you enjoy “Just Ask Tara.”
Q: What is the maximum thickness of a single flex layer, not just for a test vehicle but a flexible circuit layer manufactured commercially?
A: There are a lot of different ways to answer this question. There are examples of flexible circuits being manufactured with 10-ounce copper bonded to dielectric. In this case, the “body” of the flexible circuit is typically etched to a thinner copper for flexibility and leaves the contact fingers with the thicker copper.
Looking at what laminate thickness are commercially available for fabricators, Dupont provides a laminate with 0.005” dielectric, bonded on each side to four-ounce copper, with 0.003” adhesive. That is an extremely thick laminate, at 0.0222”. The most common flexible laminates are much thinner, with half-ounce or one-ounce copper bonded to 0.001” or 0.002” polyimide, resulting in thicknesses of 0.0024–0.0068”, depending on adhesive requirements, dielectric thicknesses, and copper weight.
To submit your questions for Tara, click here.
Suggested Items
Connect the Dots: Stop Killing Your Yield—The Hidden Cost of Design Oversights
04/03/2025 | Matt Stevenson -- Column: Connect the DotsI’ve been in this industry long enough to recognize red flags in PCB designs. When designers send over PCBs that look great on the computer screen but have hidden flaws, it can lead to manufacturing problems. I have seen this happen too often: manufacturing delays, yield losses, and designers asking, “Why didn’t anyone tell me sooner?” Here’s the thing: Minor design improvements can greatly impact manufacturing yield, and design oversights can lead to expensive bottlenecks. Here’s how to find the hidden flaws in a design and avoid disaster.
Real Time with... IPC APEX EXPO 2025: Tariffs and Supply Chains in U.S. Electronics Manufacturing
04/01/2025 | Real Time with...IPC APEX EXPOChris Mitchell, VP of Global Government Relations for IPC, discusses IPC's concerns about tariffs on copper and their impact on U.S. electronics manufacturing. He emphasizes the complexity of supply chains and the need for policymakers to understand their effects.
The Chemical Connection: Surface Finishes for PCBs
03/31/2025 | Don Ball -- Column: The Chemical ConnectionWriting about surface finishes brings a feeling of nostalgia. You see, one of my first jobs in the industry was providing technical support for surface cleaning processes and finishes to enhance dry film adhesion to copper surfaces. I’d like to take this opportunity to revisit the basics, indulge in my nostalgia, and perhaps provide some insight into why we do things the way we do them in the here and now.
NUS Physicists Discover a Copper-free High-temperature Superconducting Oxide
03/28/2025 | PRNewswireProfessor Ariando and Dr Stephen Lin Er Chow from the National University of Singapore (NUS) Department of Physics have designed and synthesised a groundbreaking new material—a copper-free superconducting oxide—capable of superconducting at approximately 40 Kelvin (K), or about minus 233 degrees Celsius (deg C), under ambient pressure.
AT&S Sets New Standards in the Recycling of Copper and Chemicals
03/25/2025 | AT&SAT&S has been working for years to reduce the ecological footprint of its production sites worldwide with a comprehensive sustainability strategy and considerable investments.