Advanced Seeker Production for Next-Generation Precision-Guided Missile
December 11, 2020 | BAE SystemsEstimated reading time: 1 minute

BAE Systems received a $60 million contract from Lockheed Martin to manufacture and deliver additional advanced missile seekers for the Long Range Anti-Ship Missile (LRASM). The seeker comprises long-range sensors and targeting technology that help the stealthy missile find and engage protected maritime targets in challenging electromagnetic environments.
“Our warfighters need resilient, long-range precision strike capabilities to compete with modern adversaries,” said Bruce Konigsberg, Radio Frequency Sensors product area director at BAE Systems. “We’re proud to partner with Lockheed Martin in delivering this distinct competitive advantage to U.S. warfighters.”
LRASM combines extended range with increased survivability and lethality to deliver long-range precision strike capabilities. LRASM is designed to detect and destroy specific targets within groups of ships by employing advanced technologies that reduce dependence on intelligence, surveillance and reconnaissance platforms, network links, and GPS navigation in contested environments.
This LRASM seeker contract continues the transition of the program from Accelerated Acquisition to Low Rate Production. BAE Systems has delivered more than 50 systems to date that have demonstrated excellent technical performance over multiple test events. The company also is working to make the seeker system smaller, more capable, and more efficient to produce.
BAE Systems’ LRASM seeker technology builds on the company’s decades of experience designing and producing state-of-the-art electronic warfare technology, and its expertise in small form factor design, signal processing, target detection, and identification.
Work on the LRASM sensor will be conducted at BAE Systems’ facilities in Wayne, New Jersey; Greenlawn, New York; and Nashua, New Hampshire.
Suggested Items
OKI, NTT Innovative Devices Establish Mass Production Technology for High-Power Terahertz Devices by Heterogeneous Material Bonding
06/21/2025 | BUSINESS WIREOKI, in collaboration with NTT Innovative Devices Corporation, has established mass production technology for high-power terahertz devices using crystal film bonding (CFB) technology for heterogeneous material bonding to bond indium phosphide (InP)-based uni-traveling carrier photodiodes (UTC-PD) onto silicon carbide (SiC) with excellent heat dissipation characteristics for improved bonding yields.
The Evolution of Picosecond Laser Drilling
06/19/2025 | Marcy LaRont, PCB007 MagazineIs it hard to imagine a single laser pulse reduced not only from nanoseconds to picoseconds in its pulse duration, but even to femtoseconds? Well, buckle up because it seems we are there. In this interview, Dr. Stefan Rung, technical director of laser machines at Schmoll Maschinen GmbH, traces the technology trajectory of the laser drill from the CO2 laser to cutting-edge picosecond and hybrid laser drilling systems, highlighting the benefits and limitations of each method, and demonstrating how laser innovations are shaping the future of PCB fabrication.
Day 2: More Cutting-edge Insights at the EIPC Summer Conference
06/18/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) summer conference took place this year in Edinburgh, Scotland, June 3-4. This is the third of three articles on the conference. The other two cover Day 1’s sessions and the opening keynote speech. Below is a recap of the second day’s sessions.
Hon Hai Research Institute Achieves Breakthrough in Quantum Cryptography Recognized by Leading Global Conference
06/17/2025 | FoxconnHon Hai Research Institute (HHRI), the research arm of Hon Hai Technology Group (Foxconn), the world’s largest electronics manufacturer and technology service provider, has achieved a significant breakthrough in quantum computing.
Global PCB Connections: Embedded Components—The Future of High-performance PCB Design
06/19/2025 | Jerome Larez -- Column: Global PCB ConnectionsA promising advancement in this space is the integration of embedded components directly within the PCB substrate. Embedded components—such as resistors, capacitors, and even semiconductors—can be placed within the internal layers of the PCB rather than mounted on the surface. This enables designers to maximize available real estate and improve performance, reliability, and manufacturability.