New Technology Will Allow Important Metals to be Made More Efficiently
August 10, 2021 | University of Minnesota College of Science and EngineeringEstimated reading time: 2 minutes
University of Minnesota Twin Cities College of Science and Engineering researchers have invented a cheaper, safer, and simpler technology that will allow a “stubborn” group of metals and metal oxides to be made into thin films used in many electronics, computer components, and other applications.
The research is published in the Proceedings of the National Academy of Sciences of the United States of America (PNAS), a peer-reviewed, multidisciplinary, high-impact scientific journal.
The researchers worked with the University of Minnesota’s Technology Commercialization Office to patent the technology and have already garnered interest from industry.
Many metals and their compounds must be made into thin films before they can be used in technological products like electronics, displays, fuel cells, or catalytic applications. “Stubborn” metals, however—which include elements like platinum, iridium, ruthenium, and tungsten, among others—are very difficult to convert into thin films because they require extremely high temperatures (usually more than 2,000 degrees Celsius) to evaporate.
Typically, scientists synthesize these metal films using techniques like sputtering and electron beam evaporation. The latter consists of melting and evaporating metals at high temperatures and allowing a film to form on top of wafers. But, this conventional method is very expensive, uses a lot of energy, and may also be unsafe due to the high voltage used.
Now, University of Minnesota researchers have developed a way to evaporate these metals at significantly lower temperatures, fewer than 200 degrees Celsius instead of several thousands. By designing and adding organic ligands—combinations of carbon, hydrogen, and oxygen atoms—to the metals, the researchers were able to substantially increase the materials’ vapor pressures, making them easier to evaporate at lower temperatures. Not only is their new technique simpler, but it also makes higher quality materials that are easily scalable.
"The ability to make new materials with ease and control is essential to transition into a new era of energy economy,” said Bharat Jalan, the senior author of the study, an expert in material synthesis, and an associate professor and Shell Chair in the University of Minnesota Department of Chemical Engineering and Materials Science (CEMS). "There is already a historical link between the innovation in synthesis science and the development of new technology. Millions of dollars go into making materials for various applications. Now, we’ve come up with a simpler and cheaper technology that enables better materials with atomic precision.”
These metals are used to make myriad products, from semiconductors for computer applications to display technology. Platinum, for example, also makes a great catalyst for energy conversion and storage and is being looked at for use in spintronic devices.
“Bringing down the cost and complexity of metal deposition while also allowing for deposition of more complex materials like oxides will play a large role in both industrial and research efforts,” said William Nunn, a University of Minnesota chemical engineering and materials science graduate student, the paper’s first author, and a recipient of the department’s Robert V. Mattern Fellowship. “Now that depositing these metals like platinum will become easier, we hope to see renewed interest in the more complex materials which contain these stubborn metals.”
In addition to Jalan and Nunn, the research team included University of Minnesota Department of Chemical Engineering and Materials Science grad students Anusha Kamath Manjeshwar, Jin Yue, Tristan K. Truttmann, and postdoctoral researcher Anil Rajapitamahuni.
The research was funded primarily by the U.S. Department of Energy, with additional support from the Air Force Office of Scientific Research and the National Science Foundation.
Read the original article, here.
Suggested Items
Zhen Ding Promotes Digital Transformation and Embraces AI Business Opportunities
06/06/2025 | Zhen Ding TechnologyOn May 27, 2025, General Manager Chen-Fu Chien of Zhen Ding Technology Group was invited to attend the "2025 Two Thousand Forum" held by The CommonWealth Magazine.
Leidos Using Quantum Technology to Thwart GPS Jamming
06/05/2025 | PRNewswireSusceptibility to jamming is a significant military vulnerability of the Global Positioning System (GPS) signal. Through a Defense Innovation Unit contract, Leidos is developing an alternative navigation technology that measures variations in the Earth's magnetic field and harnesses the quantum properties of nitrogen in diamonds.
Growing Demand for Mid-Size Displays Opens New Opportunities for FMM-Free OLED Technologies
06/05/2025 | TrendForceTrendForce’s latest report on the display industry reveals that OLED technology—valued for its self-emissive structure, high contrast ratio, and lightweight design—continues to expand its market presence, primarily in small-size applications such as smartphones.
Orbel Corporation Integrates Schmoll Direct Imaging
06/04/2025 | Schmoll AmericaOrbel Corporation in Easton, PA, proudly becomes the first PCM facility in the U.S. equipped with Schmoll’s MDI Direct Imaging system. This installation empowers Orbel to support customers with greater precision and quality.
BAE Systems Unveils Comprehensive Line of M-Code GPS Receivers at Joint Navigation Conference
06/04/2025 | PRNewswireBAE Systems unveiled a diverse line of M-Code Global Positioning System (GPS) receiver solutions at the Joint Navigation Conference in Cincinnati this week, rounding out an extensive line of products that ensure U.S. warfighters have the most dependable GPS systems available across sea, land, and air.