NIST: Common Solar Tech Can Power Smart Devices Indoors
August 19, 2021 | NISTEstimated reading time: 4 minutes
Any time you turn on a light at home or in the office, you are expending energy. But what if flipping the light switch meant producing energy too?
We usually think of solar, or photovoltaic (PV), cells fixed to roofs, converting sunlight into electricity, but bringing that technology indoors could further boost the energy efficiency of buildings and energize swaths of wireless smart technologies such as smoke alarms, cameras and temperature sensors, also called Internet of Things (IoT) devices. Now, a study from the National Institute of Standards and Technology (NIST) suggests that a straightforward approach for capturing light indoors may be within reach. NIST researchers tested the indoor charging ability of small modular PV devices made of different materials and then hooked up the lowest efficiency module — composed of silicon — to a wireless temperature sensor.
The team’s results, published in the journal Energy Science & Engineering, demonstrate that the silicon module, absorbing only light from an LED, supplied more power than the sensor consumed in operation. This outcome suggests that the device could run continuously while lights remain on, which would do away with the need for someone to manually exchange or recharge the battery.
“People in the field have assumed it’s possible to power IoT devices with PV modules in the long term, but we haven't really seen the data to support that before now, so this is kind of a first step to say that we can pull it off,” said Andrew Shore, a NIST mechanical engineer and lead author of the study.
Most buildings are lit by a mix of both the sun and artificial light sources during the day. At dusk, the latter could continue to supply energy to devices. However, light from common indoor sources, such as LEDs, spans a narrower spectrum of light than the wider bands emitted by the sun, and some solar cell materials are better at capturing these wavelengths than others.
To find out exactly how a few different materials would stack up, Shore and his colleagues tested PV mini modules made of gallium indium phosphide (GaInP), gallium arsenide (GaAs) — two materials geared toward white LED light — and silicon, a less efficient but more affordable and commonplace material.
The researchers placed the centimeters-wide modules underneath a white LED, housed inside an opaque black box to block out external light sources. The LED produced light at a fixed intensity of 1000 lux, comparable to light levels in a well-lit room, for the duration of the experiments. For the silicon and GaAs PV modules, soaking in indoor light proved less efficient than sunshine, but the GaInP module performed far better under the LED than sunlight. Both the GaInP and GaAs modules significantly outpaced silicon indoors, converting 23.1% and 14.1% of the LED light into electrical power, respectively, compared with silicon’s 9.3% power conversion efficiency.
Photos of three different types of solar modules are arranged side-by-side. The modules from left to right are made of silicon, gallium arsenide and gallium indium phosphide.
Coming as no surprise to the researchers, the rankings were the same for a charging test in which they timed how long it took the modules to fill a half-charged 4.18-volt battery, with silicon coming in last by a margin of more than a day and a half.
The team was interested in learning if the silicon module, despite its poor performance relative to its top-shelf competitors, could generate enough power to run a low-demand IoT device, Shore said.
Their IoT device of choice for the next experiment was a temperature sensor that they hooked up to the silicon PV module, placed once more under an LED. Upon turning the sensor on, the researchers found that it was able to feed temperature readings wirelessly to a computer nearby, powered by the silicon module alone. After two hours, they switched off the light in the black box and the sensor continued to run, its battery depleting at half the rate it took to charge.
“Even with a less efficient mini module, we found that we could still supply more power than the wireless sensor consumed,” Shore said.
The researchers’ findings suggest that an already ubiquitous material in outdoor PV modules could be repurposed for indoor devices with low-capacity batteries. The results are particularly applicable to commercial buildings where lights are on around the clock. But how well would PV-powered devices run in spaces that are only lit intermittently throughout the day or shut off at night? And how much of a factor would ambient light pouring in from outside be? Homes and office spaces aren’t black boxes after all.
The team plans to tackle both questions, first by setting up light-measuring devices in NIST’s Net-Zero Energy Residential Test Facility to gain an understanding of what light is available throughout the day in an average residence, Shore said. Then they’ll replicate the lighting conditions of the net-zero house in the lab to find out how PV-powered IoT devices perform in a residential scenario.
Feeding their data into computer models will also be important for predicting how much power PV modules would produce indoors given a certain level of light, a key capability for cost-effective implementation of the technology.
“We're turning on our lights all the time and as we move more toward computerized commercial buildings and homes, PV could be a way to harvest some of the wasted light energy and improve our energy efficiency,” Shore said.
Suggested Items
Breaking Silos with Intelligence: Connectivity of Component-level Data Across the SMT Line
06/09/2025 | Dr. Eyal Weiss, CybordAs the complexity and demands of electronics manufacturing continue to rise, the smart factory is no longer a distant vision; it has become a necessity. While machine connectivity and line-level data integration have gained traction in recent years, one of the most overlooked opportunities lies in the component itself. Specifically, in the data captured just milliseconds before a component is placed onto the PCB, which often goes unexamined and is permanently lost once reflow begins.
Top Tech in Taiwan: IPC's Blueprint to Advance Smart Manufacturing
06/04/2025 | Sydney Xiao, IPCRenowned as a global hub of innovation and a cornerstone of the electronics industry, Taiwan is leading advancements in technology and manufacturing. A decade ago, IPC established an office in Taiwan, embedding itself deeply in this innovative ecosystem. Now with nearly 200 member companies in the region, IPC remains dedicated to driving standardization, education, and technological progress in Taiwan’s electronics manufacturing sector.
UHDI Fundamentals: UHDI Drives Unique IoT Innovation—Smart Homes
06/03/2025 | Anaya Vardya, American Standard CircuitsThe combination of UHDI's high-bandwidth capabilities and IoT's real-time data processing can lead to more efficient, immersive, and smarter IoT systems. This convergence of two revolutionary technologies is enabling quantum advancements in some very “unconventional” applications.
IDC Decreases its Worldwide Smartphone Forecast to 0.6% for 2025 Amidst Uncertainty and Tariff Volatility
06/03/2025 | IDCWorldwide smartphone shipments are forecast to grow 0.6% year-over-year (YoY) in 2025 to 1.24 billion units, according to the International Data Corporation (IDC) Worldwide Quarterly Mobile Phone Tracker.
Delta Thailand Reinforces 4IR Leadership and Smart Energy Vision at i-Forum 2025
06/02/2025 | Delta ThailandDelta Thailand reaffirmed its role in advancing industrial automation and sustainable innovation at i-Forum 2025. Held on May 9 by the Faculty of Engineering at Kasetsart University in Bangkok, the forum focused on the theme “Leading the 4IR Revolution: Key Lessons from the WEF Global Lighthouse Network.”