-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueAdvancing the Advanced Materials Discussion
Moore’s Law is no more, and the advanced material solutions to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
Inventing the Future With SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
Sales: From Pitch to PO
From the first cold call to finally receiving that first purchase order, the July PCB007 Magazine breaks down some critical parts of the sales stack. To up your sales game, read on!
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Novel Beamforming Network Solution for Single Layer Printed Circuit Board Implementation
October 7, 2021 | Tokyo Institute of TechnologyEstimated reading time: 2 minutes

Wireless technology is responsible for enabling pivotal innovations such as radio and satellite communication. Central to these systems are antennas that can transmit and receive signals. As the scope of wireless technology continues to grow, the next generation of wireless systems requires multibeam antennas that are capable of efficiently handling multiple beams. To maintain stable and reliable connections between transmitters and receivers, these multibeam antennas use beamforming networks (BFNs) like the Butler and Nolen matrices. These BFNs control and direct output signals using a combination of electrical components including phase shifters and directional couplers. The type of BFNs used determines the structure of the circuit and the number of layers the circuit would need to generate a certain number of beams.
BFNs have become even more necessary for implementing 5G technology in the millimeter-wave range as these waves are much more prone to interference. This has led researchers to look into BFNs and improve them to provide low cost-solutions for single-layer printed circuit board (PCB) implementation. In other words, the goal is to produce a configuration with the maximum number of beams and the lowest number of layers.
Now in a study published in IEEE Journal of Microwaves, scientists from Tokyo Tech, Japan, and the European Space Agency, The Netherlands, have introduced a novel one-dimensional switching matrix that achieves a reduction in the number of layers when compared to conventional matrices. Elaborating their approach, Prof. Jiro Hirokawa from Tokyo Tech explains, "We have numerically found the parameters of the directional couplers (including crossovers) and phase shifters that determine the structure of the circuit for an arbitrary number of beams in the generalized configuration of the orthogonal matrix forming multiple antenna beams. The discovery improves over previously known solutions addressing the specific challenges of planar implementation."
The novel matrix topology overcomes the limitations of conventional beamforming matrices. While Butler matrices are limited in the number of beams they can generate to integer powers of two, the proposed solution can generate an arbitrary number of beams. Unlike Nolen matrices, an even distribution of the signals between the phase shifters and directional couplers is possible, resulting in more uniform output signals.
Compared to the conventional Butler and Nolen matrices, the novel matrix topology also achieves a reduction in the number of layers when the number of beams is five and above, reaching a reduction ratio of 38% with 8 beams. "This reduction ratio is very useful for passive antenna orthogonal beamforming matrices. It is expected to benefit the design of next-generation wireless mobile systems and satellite communication microwave payloads," explains Prof. Hirokawa.
The various improvements to the output signal and the compaction in the number of layers allows the proposed BFN to be implemented in low-cost printed circuit boards, making the manufacture of multibeam antennas for the next-generation wireless systems viable and cost-effective.
Read the original article, here.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.
Zhen Ding Expands PCB into Semiconductors at SEMICON Taiwan 2025; Advantech Drives AI Smart Parks
09/12/2025 | Zhen DingZhen Ding Technology Holding Co., Ltd., a global leader in the PCB industry, returned to exhibit at SEMICON Taiwan 2025. Positioning itself as an industry pioneer in "PCB expanding into semiconductors," the company showcased its latest strategic layout
Zhen Ding Technology Highlights AI-Driven Transformation of the PCB Industry at SEMICON Taiwan 2025
09/11/2025 | Zhen Ding TechnologyArtificial intelligence (AI) is expanding rapidly, with almost no field left untouched by the wave of computing power-driven transformation.
I-Connect007 Launches New Podcast Series on Ultra High Density Interconnect (UHDI)
09/16/2025 | I-Connect007I-Connect007 is excited to announce the debut of its latest On the Line With... podcast series, which shines a spotlight on one of the most important emerging innovations in electronics manufacturing: Ultra-High-Density Interconnect (UHDI).
Elephantech Selected for NEDO’s Deep-Tech Startups Support Program in the Green Transformation field
09/09/2025 | ElephantechElephantech is pleased to announce its selection for the Demonstration development for Mass Production (DMP) phase of the 4th round of the Deep-Tech Startups Support Program in the Green Transformation field (GX) by NEDO, the New Energy and Industrial Technology Development Organization of Japan.