-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Legislative Outlook: Helping or Hurting?
This month, we examine the rules and laws shaping the current global business landscape and how these factors may open some doors but may also complicate business operations, making profitability more challenging.
Advancing the Advanced Materials Discussion
Moore’s Law is no more, and the advanced material solutions to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
Inventing the Future With SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Novel Beamforming Network Solution for Single Layer Printed Circuit Board Implementation
October 7, 2021 | Tokyo Institute of TechnologyEstimated reading time: 2 minutes

Wireless technology is responsible for enabling pivotal innovations such as radio and satellite communication. Central to these systems are antennas that can transmit and receive signals. As the scope of wireless technology continues to grow, the next generation of wireless systems requires multibeam antennas that are capable of efficiently handling multiple beams. To maintain stable and reliable connections between transmitters and receivers, these multibeam antennas use beamforming networks (BFNs) like the Butler and Nolen matrices. These BFNs control and direct output signals using a combination of electrical components including phase shifters and directional couplers. The type of BFNs used determines the structure of the circuit and the number of layers the circuit would need to generate a certain number of beams.
BFNs have become even more necessary for implementing 5G technology in the millimeter-wave range as these waves are much more prone to interference. This has led researchers to look into BFNs and improve them to provide low cost-solutions for single-layer printed circuit board (PCB) implementation. In other words, the goal is to produce a configuration with the maximum number of beams and the lowest number of layers.
Now in a study published in IEEE Journal of Microwaves, scientists from Tokyo Tech, Japan, and the European Space Agency, The Netherlands, have introduced a novel one-dimensional switching matrix that achieves a reduction in the number of layers when compared to conventional matrices. Elaborating their approach, Prof. Jiro Hirokawa from Tokyo Tech explains, "We have numerically found the parameters of the directional couplers (including crossovers) and phase shifters that determine the structure of the circuit for an arbitrary number of beams in the generalized configuration of the orthogonal matrix forming multiple antenna beams. The discovery improves over previously known solutions addressing the specific challenges of planar implementation."
The novel matrix topology overcomes the limitations of conventional beamforming matrices. While Butler matrices are limited in the number of beams they can generate to integer powers of two, the proposed solution can generate an arbitrary number of beams. Unlike Nolen matrices, an even distribution of the signals between the phase shifters and directional couplers is possible, resulting in more uniform output signals.
Compared to the conventional Butler and Nolen matrices, the novel matrix topology also achieves a reduction in the number of layers when the number of beams is five and above, reaching a reduction ratio of 38% with 8 beams. "This reduction ratio is very useful for passive antenna orthogonal beamforming matrices. It is expected to benefit the design of next-generation wireless mobile systems and satellite communication microwave payloads," explains Prof. Hirokawa.
The various improvements to the output signal and the compaction in the number of layers allows the proposed BFN to be implemented in low-cost printed circuit boards, making the manufacture of multibeam antennas for the next-generation wireless systems viable and cost-effective.
Read the original article, here.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Rogers Announces Transition of Board Chair and Plans to Add New Independent Director
10/17/2025 | Rogers CorporationRogers Corporation announced that Peter Wallace, Chair of the Board of Directors, has informed the Board of his decision not to stand for re-election at the Company’s 2026 Annual Meeting of Shareholders.
HT Global Circuits Adds Two atg Luther & Maelzer Flying Probe Test Systems
10/15/2025 | atg Luther & Maelzer GmbHAtg Luther & Maelzer GmbH, a leading supplier of electrical testing solutions for the PCB industry, and IEC USA, a distributor of consumables, equipment, and services in the North American PCB market, confirm the order for high-speed bare board testing technology.
Cicor Posts Strong Order Intake in a Continued Challenging Environment
10/15/2025 | CicorThe Cicor Group continued its growth path during the third quarter of 2025. Quarterly sales increased by 33% to CHF 160.1 million (YTD: CHF 440.8 million, an increase of 25.4%).
Episode 6 of Ultra HDI Podcast Series Explores Copper-filled Microvias in Advanced PCB Design and Fabrication
10/15/2025 | I-Connect007I-Connect007 has released Episode 6 of its acclaimed On the Line with... American Standard Circuits: Ultra High Density Interconnect (UHDI) podcast series. In this episode, “Copper Filling of Vias,” host Nolan Johnson once again welcomes John Johnson, Director of Quality and Advanced Technology at American Standard Circuits, for a deep dive into the pros and cons of copper plating microvias—from both the fabricator’s and designer’s perspectives.
Ibiden Opens Ono Plant to Expand AI Server IC Substrate Production Capacity
10/14/2025 | IBIDENIBIDEN Co., Ltd. announces that it held the opening ceremony for its Ono Plant on October 10, 2025 in Ono Town, Ibi District, Gifu Prefecture. Construction work and preparations for mass production at the plant had been underway.