Book Excerpt: 'The Printed Circuit Designer’s Guide to… High Performance Materials', Chapter 1
March 17, 2022 | I-Connect007 Editorial TeamEstimated reading time: 1 minute

Evolution of the Resin System
Most basic resin systems have been around for a long time. Here is a little timeline of developments through more recent introductions.
- In 1907, the first laminate was made with pure phenolic resin by Westinghouse in Pittsburgh, Pennsylvania. Formica became the first true sheet laminate.The first application—a radio by Paul Eisler in 1936—led to practical manufacturing for military radios in the U.S., and use of single-sided copper-clad phenolic laminate started in about 1943 using paper and cotton as the structural component. Epoxy resin was introduced shortly after in 1947.
- Still reigning as the lowest loss resin system, a PTFE, RT/Duroid® was introduced in 1949.
- The first polyimide was discovered in 1908 by Bogart and Renshaw. However, the high heat-resistant polyimide laminate material was brought to the market in 1951.
- Isola began production of copper-clad laminate in 1956.
- Epoxy-based laminate systems followed around 1960 and used woven E-glass fabric.
- Shortly after, G-10 epoxy laminate (non-flame retardant epoxy resin plus E-glass) and a flame-retardant epoxy version called FR-4 (flame-retardant epoxy resin plus E-glass) were introduced in 1968.
From that time forward, there have been various blends, such as PPO (polyphenylene oxide)/epoxy, CE (cyanate ester)/epoxy, and polyimide/epoxy, that were created to balance properties of pure resin systems to achieve specific enhanced properties. Each new resin system was built on learning from previous products. Resin system developments for high heat applications such as LED lighting, ultra-thin non-reinforced films for capacitance and halogen-free systems to meet RoHS and REACH environmental requirements, continue to be developed to address the performance and reliability needs. With each new need, laminate material manufacturers go into the lab and see what new raw material can be used to improve resin system performance.
The process of developing a new resin system requires deep knowledge of how the PCB will be manufactured. PCB designers are most concerned with assembly process capability, long term reliability, thermal cycling performance, CAF resistance, and electrical performance, therefore, all these attributes must be balanced within the design of a resin system. The market requirements mean that laminate manufacturers must continue to research available options that will provide incremental improvements to the resin system performance.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.
How Good Design Enables Sustainable PCBs
08/21/2025 | Gerry Partida, Summit InterconnectSustainability has become a key focus for PCB companies seeking to reduce waste, conserve energy, and optimize resources. While many discussions on sustainability center around materials or energy-efficient processes, PCB design is an often overlooked factor that lies at the heart of manufacturing. Good design practices, especially those based on established IPC standards, play a central role in enabling sustainable PCB production. By ensuring designs are manufacturable and reliable, engineers can significantly reduce the environmental impact of their products.
50% Copper Tariffs, 100% Chip Uncertainty, and a Truce
08/19/2025 | Andy Shaughnessy, I-Connect007If you’re like me, tariffs were not on your radar screen until a few months ago, but now political rhetoric has turned to presidential action. Tariffs are front-page news with major developments coming directly from the Oval Office. These are not typical times. President Donald Trump campaigned on tariff reform, and he’s now busy revamping America’s tariff policy.