-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueInventing the Future with SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
Sales: From Pitch to PO
From the first cold call to finally receiving that first purchase order, the July PCB007 Magazine breaks down some critical parts of the sales stack. To up your sales game, read on!
The Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Developments in Low-Loss Substrates for High-Frequency Applications
March 29, 2022 | Alun Morgan, Ventec International GroupEstimated reading time: 2 minutes

The electronics industry as we know it today can trace its birth to the creation of the first integrated circuit in 1958, although conception occurred 10 years earlier with the invention of the transistor. That first IC contained a single transistor and four passive components. To say things have come a long way since then is a huge understatement.
Only one thing may have matched the meteoric pace of progress in our industry—market expectation. Exponential advancement has become the norm, and this is now achieved through an aggregation of improvements, rather than a large leap in one aspect such as chip lithography (Moore’s Law), or processor frequency scaling (Dennard).
It’s a small step from acknowledging this reality to adopting a holistic view that acknowledges the contribution each aspect of the system can make toward the overall performance and that seeks to optimize the interactions between them. Accordingly, in cutting-edge applications, we no longer have the luxury of treating the PCB as merely a medium for mounting and connecting components. At high signal speeds in particular, the properties of the substrate, copper foil, and trace geometries govern whether the system can deliver the required performance.
Many within the industry already understand that the PCB has become a high-tech component in itself, particularly those departments working on applications in automotive radar, 5G, and satellite communications at multi-gigahertz frequencies.
Low-Loss Substrates
These applications are operating close to the limits of the capabilities typical materials can offer. Resistive loss mechanisms, including the skin effect in copper conductors and dielectric losses due to the molecular dipole moment in the insulating substrate need to be understood and carefully managed. The cumulative effect of the tiny losses in signal energy and associated thermal dissipation incurred with every signaling transition becomes appreciable. If not properly addressed, these losses demand more powerful transmitters, more sensitive receivers, and extra thermal management than are practicable within the typical constraints on power, as well as size, weight, and cost that usually prevail.
There are growing demands for low-loss substrates to address high-performance systems, spanning applications from high-end servers and telecom infrastructure all the way to mmWave 5G, satellite, and radar applications.
By enhancing aspects of PCB laminates, it has been possible to produce low-loss substrates that can handle demanding applications in data centers and telecom switches, for example. Optimizing the fiber weave effectively minimizes micro-variabilities in signal-path characteristics that cause distortions such as signal skew, which ultimately give rise to excessive noise and signaling errors. Attributes such as drilling performance and resistance to CAF (conductive anodic filament) formation are also improved.
For applications operating at the highest frequencies in use today, ceramic-filled and PTFE-based materials are achieving the lowest loss factors in the industry. The molecular structure of PTFE (polytetrafluoroethylene) arranges fluorine atoms as spirals around the carbon backbone to create a rod-like stiff cylindrical shape that has no dipole moment. This absence of any dipole moment negates the oscillations set up in conventional substrate dielectrics due to repeated polarization caused by signal current. This is manifested as an extremely low dissipation factor (Df) that helps to reduce signal losses.
To read this entire article, which appeared in the March 2022 issue of PCB007 Magazine, click here.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.
How Good Design Enables Sustainable PCBs
08/21/2025 | Gerry Partida, Summit InterconnectSustainability has become a key focus for PCB companies seeking to reduce waste, conserve energy, and optimize resources. While many discussions on sustainability center around materials or energy-efficient processes, PCB design is an often overlooked factor that lies at the heart of manufacturing. Good design practices, especially those based on established IPC standards, play a central role in enabling sustainable PCB production. By ensuring designs are manufacturable and reliable, engineers can significantly reduce the environmental impact of their products.