-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueEngineering Economics
The real cost to manufacture a PCB encompasses everything that goes into making the product: the materials and other value-added supplies, machine and personnel costs, and most importantly, your quality. A hard look at real costs seems wholly appropriate.
Alternate Metallization Processes
Traditional electroless copper and electroless copper immersion gold have been primary PCB plating methods for decades. But alternative plating metals and processes have been introduced over the past few years as miniaturization and advanced packaging continue to develop.
Technology Roadmaps
In this issue of PCB007 Magazine, we discuss technology roadmaps and what they mean for our businesses, providing context to the all-important question: What is my company’s technology roadmap?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Intel oneDNN AI Optimizations Enabled as Default in TensorFlow
May 26, 2022 | IntelEstimated reading time: 2 minutes
In the latest release of TensorFlow 2.9, the performance improvements delivered by the Intel® oneAPI Deep Neural Network Library (oneDNN) are turned on by default. This applies to all Linux x86 packages and for CPUs with neural-network-focused hardware features (like AVX512_VNNI, AVX512_BF16, and AMX vector and matrix extensions that maximize AI performance through efficient compute resource usage, improved cache utilization and efficient numeric formatting) found on 2nd Gen Intel Xeon Scalable processors and newer CPUs. These optimizations enabled by oneDNN accelerate key performance-intensive operations such as convolution, matrix multiplication and batch normalization, with up to 3 times performance improvements compared to versions without oneDNN acceleration.
“Thanks to the years of close engineering collaboration between Intel and Google, optimizations in the oneDNN library are now default for x86 CPU packages in TensorFlow. This brings significant performance acceleration to the work of millions of TensorFlow developers without the need for them to change any of their code. This is a critical step to deliver faster AI inference and training and will help drive AI Everywhere,” said Wei Li, Intel vice president and general manager of AI and Analytics.
oneDNN performance improvements becoming available by default in the official TensorFlow 2.9 release will enable millions of developers who already use TensorFlow to seamlessly benefit from Intel software acceleration, leading to productivity gains, faster time to train and efficient utilization of compute. Additional TensorFlow-based applications, including TensorFlow Extended, TensorFlow Hub and TensorFlow Serving also have the oneDNN optimizations. TensorFlow has included experimental support for oneDNN since TensorFlow 2.5.
oneDNN is an open source cross-platform performance library of basic deep learning building blocks intended for developers of deep learning applications and frameworks. The applications and frameworks that are enabled by it can then be used by deep learning practitioners. oneDNN is part of?oneAPI, an open, standards-based, unified programming model for use across CPUs as well as GPUs and other AI accelerators.
While there is an emphasis placed on AI accelerators like GPUs for machine learning and, in particular, deep learning, CPUs continue to play a large role across all stages of the AI workflow. Intel’s extensive software-enabling work makes AI frameworks, such as the TensorFlow platform, and a wide range of AI applications run faster on Intel hardware that is ubiquitous across most personal devices, workstations and data centers. Intel’s rich portfolio of optimized libraries, frameworks and tools serves end-to-end AI development and deployment needs while being built on the foundation of oneAPI.
The oneDNN-driven accelerations to TensorFlow deliver remarkable performance gains that benefit applications spanning natural language processing, image and object recognition, autonomous vehicles, fraud detection, medical diagnosis and treatment and others.
Deep learning and machine learning applications have exploded in number due to increases in processing power, data availability and advanced algorithms. TensorFlow has been one of the world’s most popular platforms for AI application development with over 100 million downloads. Intel-optimized TensorFlow is available both as a standalone component and through the Intel oneAPI AI Analytics Toolkit, and is already being used across a broad range of industry applications including the Google Health project, animation filmmaking at Laika Studios, language translation at Lilt, natural language processing at IBM Watson and many others.
Suggested Items
ROHM Semiconductor, Valeo Co-Develop the Next Generation of Power Electronics
12/03/2024 | Globe NewswireROHM Semiconductor and Valeo, a leading automotive technology company, today announced they are collaborating to propose and optimize the next generation of power modules for electric motor inverters using their combined expertise in power electronics management
HPC Customer Engages Sondrel for High End Chip Design
11/25/2024 | SondrelSondrel, a leading provider of ultra-complex custom chips, has announced that it has started front end, RTL design and verification work on a high-performance computing (HPC) chip project for a major new customer.
Compal, ZutaCore Collaborate to Showcase Groundbreaking Waterless Two-Phase Liquid Cooling Server Solutions at SC24
11/25/2024 | Compal Electronics Inc.Compal Electronics, a global leader in server innovation, has partnered with ZutaCore®, a leading provider of waterless direct-to-chip two-phase liquid cooling (2P DLC) solutions, to introduce a series of groundbreaking server solutions.
Aeluma Secures NASA Contract to Advance Quantum Dot Photonic Integrated Circuits for Aerospace and AI Applications
11/25/2024 | ACCESSWIREAeluma, Inc., a semiconductor company specializing in high-performance, scalable technologies for mobile, automotive, AI, defense and aerospace, communication and quantum computing, announced it has been awarded a contract by NASA to develop quantum dot photonic integrated circuits (PICs) on silicon.
Altair Solutions Now Supported on NVIDIA Grace Hopper and Grace CPU Superchip Architectures
11/22/2024 | AltairAltair, a global leader in computational intelligence, announced that several products from the Altair® HyperWorks® design and simulation platform now support NVIDIA Grace CPU and Grace Hopper Superchip architectures.