-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueSpotlight on India
We invite you on a virtual tour of India’s thriving ecosystem, guided by the Global Electronics Association’s India office staff, who share their insights into the region’s growth and opportunities.
Supply Chain Strategies
A successful brand is built on strong customer relationships—anchored by a well-orchestrated supply chain at its core. This month, we look at how managing your supply chain directly influences customer perception.
What's Your Sweet Spot?
Are you in a niche that’s growing or shrinking? Is it time to reassess and refocus? We spotlight companies thriving by redefining or reinforcing their niche. What are their insights?
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
Mining for Metals Requires a Long View
June 15, 2022 | Nolan Johnson, I-Connect007Estimated reading time: 3 minutes

Nolan Johnson talks with Shaun Dykes, a 50-year expert in the mining industry. Dykes gives a concise primer on mining development, and the amount of time and effort required to develop and supply the mineral resources we depend upon for the manufacture of printed circuit boards. There are many factors that play into when and where a mine is developed—and what can prevent a mine from ever producing minerals.
Nolan Johnson: Shaun, what is your specific role and your background?
Shaun Dykes: I’m the president and CEO at American CuMO Mining Corp., and an engineer and geologist by background. I’ve been in the business for almost 50 years. I’ve been all over the world, looking at and worked on deposits in different regimes, governments, and bureaucracies from Canada, U.S., and Australia. I spent time in Russia and South America as well.
Johnson: Minerals and their role in the supply chain for finished metals has a great impact on my readers. They rely on the copper, tin, lead, and all the metals that go onto those fiberglass boards. In addition, there’s solder and the minerals involved in those formulations. Copper, of course, plays a central role; that seems to be a metal at the core of the dynamics going on.
What are some of the global supply and demand trends in your industry and how might that be affecting us in electronics manufacturing?
Dykes: Metals, especially now with all the new technologies, are appearing everywhere—your circuitry, desalination plants, batteries, even your drinking water. Every single metal is in strong demand. The supply is getting shorter and shorter, and as mines become older, the grades are dropping and that reduces the amount of metal available. It now takes about five times longer to permit a mine than it used to because of the new regulations and rules you must go through.
Even then, some mines just can’t go into production because they’re either too costly or the opposition is too strong, and you can’t get the permits to proceed. Right now, the supply is far less than the demand. Of course, that demand is increasing on a steady basis, year in, year out. That’s why you’re seeing the increase in metal prices.
Johnson: It sounds to me like any sort of domestic mining is under even stricter regulation, even while the demand is going up.
Dykes: Definitely. What we go through in the mining industry—some of it’s good, while some is red tape and just absolute garbage. But other parts are good for the environment to make sure that the old days of mining, where you just rape and pillage with no care for what was going on, is long gone. Now, when we look at developing new mines, one of the first things we look at is the environment—rare and endangered species, trees, and more, before we even start spending the hundreds of millions of dollars it takes to develop a mine.
Johnson: Hundreds of millions of dollars to develop a mine? In our space, to build a computer chip factory, a semiconductor factory, is hundreds of millions of dollars and four or five years before it’s producing. Is it comparable with a mine? If you decide to go forward, how quickly can you get a mine up and running?
Dykes: Well, it depends. From first boots on the ground, you’ve got to drill it and explore; for the larger scale mines, like the ones that supply your metals, it’s averaging close to 20 years.
Johnson: Twenty years to get a mine started?
Dykes: From when you’ve discovered and outlined it, and let’s say you’ve got all your resources and a bankable feasibility study, it’s probably two to four years to construct it. Your construction costs can range from a couple hundred million dollars for the small mines up to several billion dollars for the large scale. A large-scale copper mine today will cost $2 billion to $3 billion, maybe even more. We’ve been working on a mine in Idaho since 2004. We still have about two years to go on the economic analysis part and then it will be three or four years to build it. The cost to build it is anywhere from $1 billion to $3 billion.
To read the rest of this article, which appeared in the June 2022 issue of SMT007 Magazine, click here.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
MacDermid Alpha Presents at SMTA New Delhi, Bangalore Chapter, on Flux–OSP Interaction
09/09/2025 | MacDermid Alpha Electronics SolutionsMacDermid Alpha contributes technical insights on OSP solderability at the Bangalore Chapter, SMTA reinforcing commitment to knowledge-sharing and industry collaboration.
Electra’s ElectraJet EMJ110 Inkjet Soldermask Now in Black & Blue at Sunrise Electronics
09/08/2025 | Electra Polymers LtdFollowing the successful deployment of Electra’s Green EMJ110 Inkjet Soldermask on KLA’s Orbotech Neos™ platform at Sunrise Electronics in Elk Grove Village, Illinois, production has now moved beyond green.
Absolute EMS: The Science of the Perfect Solder Joint
09/05/2025 | Absolute EMS, Inc.Absolute EMS, Inc., a six-time award-winning provider of fast turnaround, turnkey contract electronic manufacturing services (EMS), is drawing attention to the critical role of 3D Solder Paste Inspection (SPI) in ensuring the reliability of both FLEX and rigid printed circuit board assemblies (PCBAs).
Indium Corporation to Highlight High-Reliability Solder Solutions at SMTA Guadalajara Expo
09/04/2025 | Indium CorporationIndium Corporation, a leading materials refiner, smelter, manufacturer, and supplier to the global electronics, semiconductor, thin-film, and thermal management markets, will feature a range of innovative, high-reliability solder products for printed circuit board assembly (PCBA) at the SMTA Guadalajara Expo and Tech Forum, to be held September 17-18 in Guadalajara, Mexico.
Dr. Jennie Hwang to Present on ‘Solder Joint Reliability’ at SMTA International 2025
09/03/2025 | Dr. Jennie HwangDr. Jennie Hwang to address “Solder Joint Reliability” at the 2025 SMTA International Conference on Monday, October 20. Leveraging her decades of extensive real-world experiences and deep knowledge,