Henkel Expands mTIM Coating Portfolio to Address Higher-bandwidth Optical Transceiver Requirements
September 19, 2022 | HenkelEstimated reading time: 2 minutes

As a material specialist for data and telecom applications Henkel continues to tackle the evolving performance demands for high data bandwidth applications. Today, the company announced a new formulation within its Bergquist microTIM mTIM 1000 series micro-thermal interface coating portfolio. The award-winning materials offer significant reductions in functional heat experienced by optical transceivers, with the latest development addressing the thermal challenges of 400, 600 and 800 Gb pluggable optical modules (POMs).
High-capacity POMs can produce as much as 30 watts of power in operation, generating performance-diminishing heat. Current approaches to thermal control involve conventional metal-to-metal interfaces (transceiver to riding heat sink) and the use of adhesive-applied phase change materials. Henkel’s coating materials offer a more robust solution with the company’s most recent formulation, Bergquist microTIM mTIM 1028, designed to deliver enduring thermal control for high bandwidth density POMs. These devices are typically constructed with nickel housings and interface with nickel-coated copper heat sinks for system heat removal. Compared to alternatives, Bergquist microTIM mTIM 1028 can withstand as many as 500 pulls and insertions without performance degradation and reduces operational temperatures per POM by as much as 0.18° C/W.
“With today’s data throughput expectations, heat control is one of the most effective ways to improve operational efficiency,” explains Wayne Eng, Global Head of Data & Telecom Market Strategy at Henkel. “Our groundbreaking microTIM is well-proven with standard aluminum-based riding heat sinks and is now extended to nickel-coated copper heat sinks often employed with higher-bandwidth modules. Furthermore, the material can also be coated on the transceiver, providing a value-added solution for POM manufacturers as a point of competitive differentiation.”
Internal testing of Bergquist microTIM mTIM 1028 with a QSFP-DD 400 Gb module revealed the following:
- Produced an average of 0.18° C/W performance increase compared to a metal-to-metal interface across various pressure ranges.
- A 300°C temperature spike for a 30-minute duration had no adverse effect on coating performance.
- Compatible with complex heat pipe and fin heat sink designs.
- May also be applicable as a heat dissipation solution for any metal-to-metal interface, including liquid cooling components.
“Our approach to heat control in hyperscale data center line cards is a critical development for future performance objectives,” says Eng. “While conventional thermal management methods are adequate for 100 Gb POMs, the bandwidth and reliability demands of next-generation links are tremendous. We believe this new material innovation is an important element for line card thermal control and performance optimization, and could potentially play a role in reducing heat within other data center applications, such as liquid cooling pipes and plates.”
Suggested Items
Elephantech: For a Greener Tomorrow
04/16/2025 | Marcy LaRont, PCB007 MagazineNobuhiko Okamoto is the global sales and marketing manager for Elephantech Inc., a Japanese startup with a vision to make electronics more sustainable. The company is developing a metal inkjet technology that can print directly on the substrate and then give it a copper thickness by plating. In this interview, he discusses this novel technology's environmental advantages, as well as its potential benefits for the PCB manufacturing and semiconductor packaging segments.
Trouble in Your Tank: Organic Addition Agents in Electrolytic Copper Plating
04/15/2025 | Michael Carano -- Column: Trouble in Your TankThere are numerous factors at play in the science of electroplating or, as most often called, electrolytic plating. One critical element is the use of organic addition agents and their role in copper plating. The function and use of these chemical compounds will be explored in more detail.
IDTechEx Highlights Recyclable Materials for PCBs
04/10/2025 | IDTechExConventional printed circuit board (PCB) manufacturing is wasteful, harmful to the environment and energy intensive. This can be mitigated by the implementation of new recyclable materials and technologies, which have the potential to revolutionize electronics manufacturing.
Connect the Dots: Stop Killing Your Yield—The Hidden Cost of Design Oversights
04/03/2025 | Matt Stevenson -- Column: Connect the DotsI’ve been in this industry long enough to recognize red flags in PCB designs. When designers send over PCBs that look great on the computer screen but have hidden flaws, it can lead to manufacturing problems. I have seen this happen too often: manufacturing delays, yield losses, and designers asking, “Why didn’t anyone tell me sooner?” Here’s the thing: Minor design improvements can greatly impact manufacturing yield, and design oversights can lead to expensive bottlenecks. Here’s how to find the hidden flaws in a design and avoid disaster.
Real Time with... IPC APEX EXPO 2025: Tariffs and Supply Chains in U.S. Electronics Manufacturing
04/01/2025 | Real Time with...IPC APEX EXPOChris Mitchell, VP of Global Government Relations for IPC, discusses IPC's concerns about tariffs on copper and their impact on U.S. electronics manufacturing. He emphasizes the complexity of supply chains and the need for policymakers to understand their effects.