-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueVoices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
The Essential Guide to Surface Finishes
We go back to basics this month with a recount of a little history, and look forward to addressing the many challenges that high density, high frequency, adhesion, SI, and corrosion concerns for harsh environments bring to the fore. We compare and contrast surface finishes by type and application, take a hard look at the many iterations of gold plating, and address palladium as a surface finish.
It's Show Time!
In this month’s issue of PCB007 Magazine we reimagine the possibilities featuring stories all about IPC APEX EXPO 2025—covering what to look forward to, and what you don’t want to miss.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Microvias Can Be Stacked in Certain Package Densities
October 13, 2022 | I-Connect007 Editorial TeamEstimated reading time: 2 minutes

Summit Interconnect’s Gerry Partida recently spoke with the I-Connect007 Editorial Team about his research into root causes of weak microvias. Rather than a single manufacturing process cause, Gerry suggests that microvia reliability is the culmination of several material interactions and that contrary to popular belief, microvias can still be stacked in small, tight packaging densities. He highlights the need for simulation, as well as some of his findings that he plans to publish in a paper at IPC APEX EXPO 2023.
Nolan Johnson: Gerry, I understand your team has been doing some research into microvia stacking and will have a paper at the upcoming IPC APEX EXPO on this topic. What have you been learning?
Gerry Partida: Remember back in the early days of HDI, we would stack microvias as deep and plentiful as we wanted to? Then people started experiencing intermittent failures. Boards got hot, the components would fail, and it went back and forth. Manufacturing did something wrong, the assembler overbaked the boards, and it would go back and forth again. A lot of designs started to suffer, especially certain military products that would stack microvias. We would ask, “Why isn’t it working? Why does it work when it does work?” Most of the microvias that were stacked originally were small BGA packages. They were 0.4 mm or 0.5 mm, and those densities drove you to stack. These designs often were for the commercial OEMs, but if something failed, the commercial guys didn’t come back to discuss the issues.
But for the military guys who have ASICS that cost hundreds of thousands of dollars each, the stakes are much higher. If it is for space, then it can only be assembled once for flight; it cannot be taken off and reused. The military packaging then was a much wider pitch than the commercial guys who were stacking microvias initially.
When we looked at where the failures were happening, they were still happening with the commercial guys who were going three or four deep stacking microvias. They weren’t trying to make short, squatty, wide-diameter microvias because they were using thicker dielectrics to get wider lines for impedance. Consequently, we went for a time where there really didn’t seem to be a problem. Then it became, “We see a fracture at the target pad on the stack of the microvias,” and everybody thought there was a weakness in the electroless copper.
We all came up with these rules of thumb: Don’t stack more than two. A lot of DOEs were done, and they almost always concluded, “Do two stacks, then stagger off.” That seemed to work. Even fabricators we would work with had rules like, “Keep your aspect ratio for a single microvia at 0.75 to one. If you’re stacking them, keep them at 0.6 to one.” That seemed to work; we got good results.
Now, during this time we employed reflow resistance testing to monitor the strength of connections in the finished product. We started learning more about what works, and what doesn’t work. Some designs would slip through, where they do a three-stack on tight pitch, and they were passing. We were asking that if our rule of thumb was only two, then why is it working at three? When you look at the design, it’s a 0.4 mm pitch.
To read this entire conversation, which appeared in the September 2022 issue of PCB007 Magazine, click here.
Suggested Items
Elephantech: For a Greener Tomorrow
04/16/2025 | Marcy LaRont, PCB007 MagazineNobuhiko Okamoto is the global sales and marketing manager for Elephantech Inc., a Japanese startup with a vision to make electronics more sustainable. The company is developing a metal inkjet technology that can print directly on the substrate and then give it a copper thickness by plating. In this interview, he discusses this novel technology's environmental advantages, as well as its potential benefits for the PCB manufacturing and semiconductor packaging segments.
Trouble in Your Tank: Organic Addition Agents in Electrolytic Copper Plating
04/15/2025 | Michael Carano -- Column: Trouble in Your TankThere are numerous factors at play in the science of electroplating or, as most often called, electrolytic plating. One critical element is the use of organic addition agents and their role in copper plating. The function and use of these chemical compounds will be explored in more detail.
IDTechEx Highlights Recyclable Materials for PCBs
04/10/2025 | IDTechExConventional printed circuit board (PCB) manufacturing is wasteful, harmful to the environment and energy intensive. This can be mitigated by the implementation of new recyclable materials and technologies, which have the potential to revolutionize electronics manufacturing.
Connect the Dots: Stop Killing Your Yield—The Hidden Cost of Design Oversights
04/03/2025 | Matt Stevenson -- Column: Connect the DotsI’ve been in this industry long enough to recognize red flags in PCB designs. When designers send over PCBs that look great on the computer screen but have hidden flaws, it can lead to manufacturing problems. I have seen this happen too often: manufacturing delays, yield losses, and designers asking, “Why didn’t anyone tell me sooner?” Here’s the thing: Minor design improvements can greatly impact manufacturing yield, and design oversights can lead to expensive bottlenecks. Here’s how to find the hidden flaws in a design and avoid disaster.
Real Time with... IPC APEX EXPO 2025: Tariffs and Supply Chains in U.S. Electronics Manufacturing
04/01/2025 | Real Time with...IPC APEX EXPOChris Mitchell, VP of Global Government Relations for IPC, discusses IPC's concerns about tariffs on copper and their impact on U.S. electronics manufacturing. He emphasizes the complexity of supply chains and the need for policymakers to understand their effects.