Thinnest Ferroelectric Material Ever Paves the Way for New Energy-efficient Devices
October 21, 2022 | Argonne National LaboratoryEstimated reading time: 3 minutes

As electronic devices become smaller and smaller, the materials that power them need to become thinner and thinner. Because of this, one of the key challenges scientists face in developing next-generation energy-efficient electronics is discovering materials that can maintain special electronic properties at an ultrathin size.
Advanced materials known as ferroelectrics present a promising solution to help lower the power consumed by the ultrasmall electronic devices found in cell phones and computers. Ferroelectrics — the electrical analog to ferromagnets — are a class of materials in which some of the atoms are arranged off-center, leading to a spontaneous internal electric charge or polarization. This internal polarization can reverse its direction when scientists expose the material to an external voltage. This offers great promise for ultralow-power microelectronics.
Unfortunately, conventional ferroelectric materials lose their internal polarization below around a few nanometers in thickness. This means they are not compatible with current-day silicon technology. This issue has previously prevented the integration of ferroelectrics into microelectronics.
But now a team of researchers from the University of California at Berkeley performing experiments at the U.S.
Department of Energy’s (DOE) Argonne National Laboratory have found a solution that simultaneously solves both problems by creating the thinnest ferroelectric ever reported and the thinnest demonstration of a working memory on silicon.
In a study published in the journal Science, the research team discovered stable ferroelectricity in an ultrathin layer of zirconium dioxide just half a nanometer thick. That’s the size of a single atomic building block, about 200,000 times thinner than a human hair. The team grew this material directly on silicon. They found ferroelectricity emerges in zirconium dioxide — normally a nonferroelectric material — when it is grown extremely thin, approximately 1-2 nanometers in thickness.
Notably, the ferroelectric behavior continues to its near-atomic-scale thickness limit of roughly half a nanometer. This fundamental breakthrough marks the world’s thinnest ferroelectric. This is surprising for a material that is not even typically ferroelectric in its bulk form.
The researchers were also able to switch the polarization in this ultrathin material back and forth with a small voltage, enabling the thinnest demonstration of a working memory ever reported on silicon. It also offers substantial promise for energy-efficient electronics, especially considering conventional zirconium dioxide is already present in today’s state-of-the-art silicon chips.
“This work takes a key step towards integrating ferroelectrics into highly scaled microelectronics,” said Suraj Cheema, a postdoctoral researcher at UC Berkeley, the first author of the study.
Visualizing the ferroelectric behavior of such ultrathin systems required the use of Argonne’s Advanced Photon Source, a DOE Office of Science user facility. ?“X-ray diffraction gives needed insight into how this ferroelectricity emerges,” said Argonne physicist John Freeland, another author of the study.
Beyond the immediate technological impact, this work also has significant implications for designing new two-dimensional materials.
“Simply squeezing 3D materials to their 2D thickness limit offers a straightforward-yet-effective route to unlocking hidden phenomena in a wide variety of simple materials,” Cheema said. ?“This greatly expands the materials design space for next-generation electronics to include materials already compatible with silicon technologies.”
As Cheema noted, simply growing just a few atomic layers of a 3D material can offer the potential for a new class of 2D materials — atomically-thin 3D materials — that go beyond conventional sheets of 2D materials like graphene. The researchers hope this work will motivate more research into two-dimensional 3D materials exhibiting emergent electronic phenomena relevant for energy-efficient electronics.
This work was led by Cheema and Sayeef Salahuddin of UC Berkeley, along with co-first authors Nirmaan Shanker and Shang-Lin Hsu. At beamline 33-BM-C of Argonne’s Advanced Photon Source, working with Argonne physicists Freeland and Zhan Zhang, the researchers employed synchrotron X-ray absorption spectroscopy and X-ray diffraction to investigate the structural evolution of ferroelectricity to the atomic scale and explore its electronic origins. At DOE’s Lawrence Berkeley National Laboratory’s Advanced Light Source and Molecular Foundry, collaborating with scientists Padraic Shafer and Jim Ciston, the material’s ferroelectric crystal structure was studied using soft X-rays and transmission electron microscopy.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
ITW EAE Despatch Ovens Now Support ASTM 5423 Testing
10/15/2025 | ITW EAEAs the demand for high-performance electrical insulation materials continues to grow—driven by the rapid expansion of electric vehicles (EVs) and energy storage systems—thermal processing has become a critical step in material development.
Beyond Thermal Conductivity: Exploring Polymer-based TIM Strategies for High-power-density Electronics
10/13/2025 | Padmanabha Shakthivelu and Nico Bruijnis, MacDermid Alpha Electronics SolutionsAs power density and thermal loads continue to increase, effective thermal management becomes increasingly important. Rapid and efficient heat transfer from power semiconductor chip packages is essential for achieving optimal performance and ensuring long-term reliability of temperature-sensitive components. This is particularly crucial in power systems that support advanced applications such as green energy generation, electric vehicles, aerospace, and defense, along with high-speed computing for data centers and artificial intelligence (AI).
Is Glass Finally Coming of Age?
10/13/2025 | Nolan Johnson, I-Connect007Substrates, by definition, form the base of all electronic devices. Whether discussing silicon wafers for semiconductors, glass-and-epoxy materials in printed circuits, or the base of choice for interposers, all these materials function as substrates. While other substrates have come and gone, silicon and FR-4 have remained the de facto standards for the industry.
Creative Materials to Showcase Innovative Functional Inks for Medical Devices at COMPAMED 2025
10/09/2025 | Creative Materials, Inc.Creative Materials, a leading manufacturer of high-performance functional inks and coatings, is pleased to announce its participation in COMPAMED 2025, taking place November 17–20 in Düsseldorf, Germany.
Jiva Leading the Charge Toward Sustainable Innovation
09/30/2025 | Marcy LaRont, PCB007 MagazineEnvironmental sustainability in business—product circularity—is a high priority these days. “Circularity,” the term meant to replace “recycling,” in its simplest definition, describes a full circle life for electronic products and all their elements. The result is re-use or a near-complete reintroduction of the base materials back into the supply chain, leaving very little left for waste. For what cannot be reused productively, the ultimate hope is to have better, less harmful means of disposal and/or materials that can seamlessly and harmlessly decompose and integrate back into the natural environment. That is where Jiva and Soluboard come in.