-
-
News
News Highlights
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueThe Rise of Data
Analytics is a given in this industry, but the threshold is changing. If you think you're too small to invest in analytics, you may need to reconsider. So how do you do analytics better? What are the new tools, and how do you get started?
Counterfeit Concerns
The distribution of counterfeit parts has become much more sophisticated in the past decade, and there's no reason to believe that trend is going to be stopping any time soon. What might crop up in the near future?
Solder Printing
In this issue, we turn a discerning eye to solder paste printing. As apertures shrink, and the requirement for multiple thicknesses of paste on the same board becomes more commonplace, consistently and accurately applying paste becomes ever more challenging.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
Shrinking Silicon, Growing Signal Integrity Challenges
March 9, 2023 | I-Connect007 Editorial TeamEstimated reading time: 2 minutes
What happens when die sizes shrink? As IPC design instructor Kris Moyer explains, quite a bit. Shrinking silicon can mean rising signal speed and rise times, and traditional PCB designers may find themselves dealing with problems formerly only seen by RF engineers.
We asked Kris to discuss the pros and cons of silicon shrinkage and some of the techniques and trade-offs that PCB designers and design engineers need to understand as they find themselves entering the RF arena.
Andy Shaughnessy: This issue focuses on the effects of shrinking silicon on a board’s signal integrity and EMI. So, what do PCB designers need to understand about die shrinkage?
Kris Moyer: Basically, the main thing that happens when you shrink the size of the die is that it shrinks the length of the channel of the transistors inside the die. What that effectively does is it increases the speed of the circuit, meaning it decreases the rise time or the fall time. Then you end up having to start treating your traces, geometries, and transmission lines almost as if they're RF designs.
We've heard for decades that RF designs are their own special little area of black magic, because we start dealing with all these waves and fields and so on. We say in digital design that it's the rise time and not the frequency. Which is the driving force, the key factor, that causes the need for all these high-speed designs? What is the frequency content?
Fourier's theorem says any wave form—square wave, triangle wave, sawtooth wave, or any wave form—can be recreated as a superposition of a sufficient amount of sine waves and cosine waves of sufficiently higher harmonics. Let’s take a fundamental frequency, 1 kilohertz. And you have A1, A3, A5 and A10 kilohertz. You have all these harmonics, we superimpose them, and you end up getting a square wave. Well, how square does that square wave need to be? This is the part that throws a lot of designers off.
When we talk about rise time, we're really talking about the time it takes that square wave, the digital signal, to change from a logic 0 to a logic 1. As the die shrinks, that time also shrinks. About 20 years ago, we were having rise times and fall times in the multiples of nanoseconds—five to 10 nanoseconds. It took that signal five to 10 nanoseconds to change from a logic 0 to a logic 1. I was just looking at one FPGA with rise times as fast as 0.25 nanosecond, and that's at 16 nanometers.
My friends who work in next-generation silicon at some of the big telecom companies are working in 5, 3, and 2 nanometer, and going sub 100 picosecond. Instead of 0.25 nanosecond, it’s 0.1 nanosecond and 0.05 nanosecond rise times. They’re such incredibly fast rise times that the number of harmonics we need to create a vertical square edge that transitions from A0 to A1 that fast means that the frequencies involved in that superposition in that Fourier series are up into the multiple gigahertz of frequency content. That means that you're in the RF frequency range.
To read this entire conversation, which appeared in the February 2023 issue of Design007 Magazine, click here.
Suggested Items
TRI at SMTA Silicon Valley Expo & Tech Forum 2024
11/12/2024 | TRITest Research, Inc. (TRI), the leading provider of test and inspection systems for the electronics manufacturing industry, will join the SMTA Silicon Valley Expo & Tech Forum 2024 on December 5, 2024, at the Fremont Marriott Silicon Valley.
Electronics Manufacturing Association Statement on U.S. Election Results
11/08/2024 | IPCJohn Mitchell, President and CEO of IPC, the global electronics manufacturing industry association, issued the following statement on the United States’ election results:
Meeting in Vienna: PCB Designers Invited to Engage in the Silicon to Systems Process
11/08/2024 | Michelle Te, IPC CommunityPCB designers interested in innovative ideas, technical prowess, relevance, quality, and doing their best work can now register for the inaugural Pan-European Electronics Design Conference (PEDC), Jan. 29-30, 2025, in Vienna, Austria.
Nolan's Notes: The Rise (and Risk) of Data
11/05/2024 | Nolan Johnson -- Column: Nolan's NotesLast month, I read about a United Airlines flight that declared an emergency over the middle of Hudson Bay in northern Canada. All the cockpit screens had gone blank and both flight management computers had entered into a “degraded mode with limited capabilities.” The pilots had lost most of their autopilot functionality, but still had enough control systems to manually fly the plane to a safe landing at O’Hare.
Fresh PCB Concepts: The Critical Nature of Copper Thickness on PCBs
10/31/2024 | Team NCAB -- Column: Fresh PCB ConceptsPCBs are the backbone of modern electronics and the copper layers within these boards serve as the primary pathways for electrical signals. When designing and manufacturing PCBs, copper thickness is one of the most critical factors and significantly affects the board’s performance and durability. The IPC-6012F specification, the industry standard for the performance and qualification of rigid PCBs, sets clear guidelines on copper thickness to ensure reliability in different environments and applications.