Challenges of DFM Analysis for Flex and Rigid-Flex Design, Part 3
June 14, 2023 | Mark Gallant, DownStream TechnologiesEstimated reading time: 2 minutes

(Editor’s note: This is the final installment of a three-part series. To read Part 2, click here.)
What a True Rigid-flex DFM Analysis Solution Must Include
DFM analysis tools for the last several decades have focused on a typical rigid PCB or some variant. While many standard DFM constraints are applicable, flex has many unique requirements that cannot be addressed with typical DFM analysis. Flex and rigid-flex DFM must be targeted toward the unique materials and processes used to produce flex and rigid-flex designs.
One such example is board outline vs. layer profile. Some CAD systems do not support boundaries on a per layer basis. For most rigid-flex designs, all that is provided is a cumulative board outline that is the extent of all layer shapes. Without a defined boundary per layer, there may be no prevention of routing traces or placing components outside, or off of, a layer in the CAD system. The CAD DRC may also miss these items because they are within the boundary of the cumulative board outline. Having a DFM tool capable of analyzing each layer against its unique profile can detect when conductors are outside, or off of, their respective layers.
Here is a categorized list of the types of analyses and features a flex or rigid-flex DFM tool should have.
1. Trace fracture
Trace or copper fracture in bend areas. Some examples include presence of trace corners, width transitions, or traces non-perpendicular to the bend axis in a bend area. Also, I-beaming where traces are coincident on adjacent flexible layers.
2. Delamination
Pads or vias in bend areas with improper pad shapes or coverlay exposures. When it is required to have vias or other pads in bend areas, special care must be taken when designing the coverlay to reduce delamination potential. Often in these conditions, the coverlay overlaps the pad area to prevent delamination. In other designs, pads are adorned with tabs to extend under the coverlay.
3. Tearing
The absence of tear stops on slits or inside corners. Copper segments, arcs, circles, or other shapes are added to prevent tear around slits or inside corners.
4. Squeeze out
Epoxy leakage onto adjacent copper or other layer surfaces. In order to prevent epoxy squeeze out, a perimeter air gap or fence must be present around adjacent layer content. For example, a larger annular ring may be required on the epoxy layer than its corresponding coverlay annular ring. This prevents epoxy from squeezing out onto adjacent copper or traces.
5. Button plating
Absence of exposures in coverlay for vias. The most common method of plating vias in a bend area is button plating. This requires vias to be plated have an exposure on their adjacent coverlay. Absence of an exposure on the coverlay would prevent plating.
To read this entire article, which appeared in the June 2023 issue of Design007 Magazine, click here.
Suggested Items
Copper Price Surge Raises Alarms for Electronics
07/15/2025 | Global Electronics Association Advocacy and Government Relations TeamThe copper market is experiencing major turbulence in the wake of U.S. President Donald Trump’s announcement of a 50% tariff on imported copper effective Aug. 1. Recent news reports, including from the New York Times, sent U.S. copper futures soaring to record highs, climbing nearly 13% in a single day as manufacturers braced for supply shocks and surging costs.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
07/11/2025 | Andy Shaughnessy, Design007 MagazineThis week, we have quite a variety of news items and articles for you. News continues to stream out of Washington, D.C., with tariffs rearing their controversial head again. Because these tariffs are targeted at overseas copper manufacturers, this news has a direct effect on our industry.I-Connect007 Editor’s Choice: Five Must-Reads for the Week
Digital Twin Concept in Copper Electroplating Process Performance
07/11/2025 | Aga Franczak, Robrecht Belis, Elsyca N.V.PCB manufacturing involves transforming a design into a physical board while meeting specific requirements. Understanding these design specifications is crucial, as they directly impact the PCB's fabrication process, performance, and yield rate. One key design specification is copper thieving—the addition of “dummy” pads across the surface that are plated along with the features designed on the outer layers. The purpose of the process is to provide a uniform distribution of copper across the outer layers to make the plating current density and plating in the holes more uniform.
Trump Copper Tariffs Spark Concern
07/10/2025 | I-Connect007 Editorial TeamPresident Donald Trump stated on July 8 that he plans to impose a 50% tariff on copper imports, sparking concern in a global industry whose output is critical to electric vehicles, military hardware, semiconductors, and a wide range of consumer goods. According to Yahoo Finance, copper futures climbed over 2% following tariff confirmation.
Happy’s Tech Talk #40: Factors in PTH Reliability—Hole Voids
07/09/2025 | Happy Holden -- Column: Happy’s Tech TalkWhen we consider via reliability, the major contributing factors are typically processing deviations. These can be subtle and not always visible. One particularly insightful column was by Mike Carano, “Causes of Plating Voids, Pre-electroless Copper,” where he outlined some of the possible causes of hole defects for both plated through-hole (PTH) and blind vias.