-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current Issue
The Legislative Outlook: Helping or Hurting?
This month, we examine the rules and laws shaping the current global business landscape and how these factors may open some doors but may also complicate business operations, making profitability more challenging.
Advancing the Advanced Materials Discussion
Moore’s Law is no more, and the advanced material solutions to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
Inventing the Future With SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Simplifying Your Design
November 9, 2023 | I-Connect007 Editorial TeamEstimated reading time: 1 minute
It’s safe to say that millions of dollars, not to mention man-hours, are wasted each year because of over-constrained, overly complicated PCB designs. Much of this is due to the increase in signal speeds and rise times, even in “mature” PCBs, and the extra cost is already part of the budget.
For this issue on simplifying PCB designs, the I-Connect007 Editorial Team spoke with IPC instructor Kris Moyer about ways that designers can avoid overconstraining their designs and making them needlessly complex. As Kris says, streamlining your design comes down to having a solid understanding of fab and assembly processes and the silicon tradeoffs that can simplify or overcomplicate your design, as well as the need to start working with fabricators early in the cycle.
Andy Shaughnessy: What are some typical snafus and missteps that you see designers make to overcomplicate their designs?
Kris Moyer: Here’s what often happens: Let’s say you have one connector on your board that needs tight tolerance. But rather than dimensioning to just that connector, locally, designers will do a tight tolerance to the data from the global dimensioning system, which now constrains the entire board.
Or, if they need perfect coplanarity on a BGA part for good BGA mounting, they’ll put co-planarity back over the entire board where they don't need it, because regular chips, gull-wings, and so on don't need the same amount of coplanarity as a BGA—or they'll try to hold layer tolerances: “I need a 2-mil layer plus or minus 10%,” because they know that 10% is normal for tolerance, but they missed the part of the spec that says 10% or 1 mil, whichever is greater. Fabricators can't hold that tight a layer-to-layer tolerance when it's below a certain layer thickness.
Below about a 10-mil thickness, the best fabricators can do layer-to-layer is 1 mil for nominal processing; If you want to hold a tighter tolerance, you're paying for 100 to get five boards. That’s just a couple of examples. Another is overly tight hole tolerances: “I want to have 150-mil diameter hole ±1 mil.” Again, it's unreasonable, right?
To read the rest of this interview, which appeared in the November 2023 issue of Design007 Magazine, click here.
Testimonial
"Your magazines are a great platform for people to exchange knowledge. Thank you for the work that you do."
Simon Khesin - Schmoll MaschinenSuggested Items
Designers Notebook: Power and Ground Distribution Basics
10/29/2025 | Vern Solberg -- Column: Designer's NotebookThe principal objectives to be established during the planning stage are to define the interrelationship between all component elements and confirm that there is sufficient surface area for placement, the space needed to ensure efficient circuit interconnect, and to accommodate adequate power and ground distribution.
Connect the Dots: Designing for the Reality of UHDI PCBs—Drilling
11/04/2025 | Matt Stevenson -- Column: Connect the DotsUltra high density interconnect (UHDI) PCBs are changing the game in designing for the reality of manufacturing. With both consumer and industrial electronic devices becoming more advanced, the demand for UHDI PCBs will grow. That means we’re all likely to be designing more UHDI boards. UHDI advanced miniaturization technology challenges designers with regard to both board thickness and footprint. Designers will face more variables in every aspect of design creation. This is certainly the case with drilling.
The Marketing Minute: Marketing With Layers
10/15/2025 | Brittany Martin -- Column: The Marketing MinuteMarketing to a technical audience is like crafting a multilayer board: Each layer serves a purpose, from the surface story to the buried detail that keeps everything connected. At I-Connect007, we’ve learned that the best marketing campaigns aren’t built linearly; they’re layered. A campaign might start with a highly technical resource, such as an in-depth article, a white paper, or a podcast featuring an engineer delving into the details of a process. That’s the foundation, the substance that earns credibility.
EDADOC Ushers in a New Era of Robotics Innovation
10/07/2025 | Edy Yu, Editor-in-Chief, ECIOOn Sept. 11, Shanghai Zhiyuan Technology Co., Ltd. (MScape) made a stunning debut at Shanghai’s 2025 Fourth North Bund Cybersecurity Forum and Cyber Intelligence Security Frontier Technology and Equipment Exhibition. The company presented the world’s first Dvorak super heterogeneous architecture and the Zhijing T-series-embodied intelligence (robotics) edge computing power platform. This has been a game-changer in the cybersecurity technology field, filling the gap in the domestic robotics core computing power platform.
Connect the Dots: Evolution of PCB Manufacturing—Lamination
10/02/2025 | Matt Stevenson -- Column: Connect the DotsWhen I wrote The Printed Circuit Designer's Guide to...™ Designing for Reality, it was not a one-and-done effort. Technology is advancing rapidly. Designing for the reality of PCB manufacturing will continue to evolve. That’s why I encourage designers to stay on top of the tools and processes used during production, to ensure their designs capitalize on the capabilities of their manufacturing partner.