Intel Demonstrates Breakthroughs in Next-Generation Transistor Scaling for Future Nodes
December 11, 2023 | IntelEstimated reading time: 2 minutes
Intel unveiled technical breakthroughs that maintain a rich pipeline of innovations for the company’s future process roadmap, underscoring the continuation and evolution of Moore’s Law. At the 2023 IEEE International Electron Devices Meeting (IEDM), Intel researchers showcased advancements in 3D stacked CMOS (complementary metal oxide semiconductor) transistors combined with backside power and direct backside contacts. The company also reported on scaling paths for recent R&D breakthroughs for backside power delivery, such as backside contacts, and it was the first to demonstrate successful large-scale 3D monolithic integration of silicon transistors with gallium nitride (GaN) transistors on the same 300 millimeter (mm) wafer, rather than on package.
“As we enter the Angstrom Era and look beyond five nodes in four years, continued innovation is more critical than ever. At IEDM 2023, Intel showcases its progress with research advancements that fuel Moore’s Law, underscoring our ability to bring leading-edge technologies that enable further scaling and efficient power delivery for the next generation of mobile computing,” said Sanjay Natarajan, Intel senior vice president and general manager of Components Research.
Transistor scaling and backside power are key to helping meet the exponentially increasing demand for more powerful computing. Year after year, Intel meets this computing demand, demonstrating that its innovations will continue to fuel the semiconductor industry and remain the cornerstone of Moore’s Law. Intel’s Components Research group consistently pushes the boundaries of engineering by stacking transistors, taking backside power to the next level to enable more transistor scaling and improved performance, as well as demonstrating that transistors made of different materials can be integrated on the same wafer.
Recent process technology roadmap announcements highlighting the company’s innovation in continued scaling – including PowerVia backside power, glass substrates for advanced packaging and Foveros Direct – originated in Components Research and are expected to be in production this decade.
At IEDM 2023, Components Research showed its commitment to innovating new ways of putting more transistors on silicon while achieving higher performance. Researchers have identified key R&D areas necessary to continue scaling by efficiently stacking transistors. Combined with backside power and backside contacts, these will be major steps forward in transistor architecture technology. Along with improving backside power delivery and employing novel 2D channel materials, Intel is working to extend Moore’s Law to a trillion transistors on a package by 2030.
Intel delivers industry-first, breakthrough 3D stacked CMOS transistors combined with backside power and backside contact:
Intel’s latest transistor research presented at IEDM 2023 shows an industry first: the ability to vertically stack complementary field effect transistors (CFET) at a scaled gate pitch down to 60 nanometers (nm). This allows area efficiency and performance benefits by stacking transistors. It is also combined with backside power and direct backside contacts. It underscores Intel’s leadership in gate-all-around transistors and showcases the company’s ability to innovate beyond RibbonFET, putting it ahead of the competition.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Curtiss-Wright to Supply Turret Drive Stabilization Systems for U.S. Army XM30 Combat Vehicle Prototypes
10/16/2025 | BUSINESS WIRECurtiss-Wright Corporation announced that it has been selected by American Rheinmetall to provide its Turret Drive Stabilization System (TDSS) for the prototype phase of the U.S. Army’s XM30 Combat Vehicle (CV) program, which was recently approved to advance to Milestone B, the Engineering and Manufacturing Development (EMD) phase.
Episode 6 of Ultra HDI Podcast Series Explores Copper-filled Microvias in Advanced PCB Design and Fabrication
10/15/2025 | I-Connect007I-Connect007 has released Episode 6 of its acclaimed On the Line with... American Standard Circuits: Ultra High Density Interconnect (UHDI) podcast series. In this episode, “Copper Filling of Vias,” host Nolan Johnson once again welcomes John Johnson, Director of Quality and Advanced Technology at American Standard Circuits, for a deep dive into the pros and cons of copper plating microvias—from both the fabricator’s and designer’s perspectives.
American Standard Circuits Achieves Successful AS9100 Recertification
10/14/2025 | American Standard CircuitsAmerican Standard Circuits (ASC), a leading manufacturer of advanced printed circuit boards, proudly announces the successful completion of its AS9100 recertification audit. This milestone reaffirms ASC’s ongoing commitment to the highest levels of quality, reliability, and process control required to serve aerospace, defense, space, and other mission-critical industries.
Imec Launches 300mm GaN Program to Develop Advanced Power Devices and Reduce Manufacturing Costs
10/13/2025 | ImecImec, a world-leading research and innovation hub in nanoelectronics and digital technologies, welcomes AIXTRON, GlobalFoundries, KLA Corporation, Synopsys, and Veeco as first partners in its 300mm gallium-nitride (GaN) open innovation program track for low- and high-voltage power electronics applications.
Renesas Powers 800 Volt Direct Current AI Data Center Architecture with Next-Generation Power Semiconductors
10/13/2025 | RenesasRenesas Electronics Corporation, a premier supplier of advanced semiconductor solutions, announced that it is supporting efficient power conversion and distribution for the 800 Volt Direct Current power architecture announced by NVIDIA, helping fuel the next wave of smarter, faster AI infrastructure.