Siemens Simplifies Development of AI Accelerators for Advanced System-on-chip Designs with Catapult AI NN
May 24, 2024 | SiemensEstimated reading time: 2 minutes
Siemens Digital Industries Software announced Catapult™ AI NN software for High-Level Synthesis (HLS) of neural network accelerators on Application-Specific Integrated Circuits (ASICs) and System-on-a-chip (SoCs). Catapult AI NN is a complete solution that starts with a neural network description from an AI framework, converts it into C++ and synthesizes it into an RTL accelerator in Verilog or VHDL for implementation in silicon.
Catapult AI NN brings together hls4ml, an open-source package for machine learning hardware acceleration, and Siemens' Catapult™ HLS software for High-Level Synthesis. Developed in close collaboration with Fermilab, a U.S. Department of Energy Laboratory, and other leading contributors to hls4ml, Catapult AI NN addresses the unique requirements of machine learning accelerator design for power, performance, and area on custom silicon.
“The handoff process and manual conversion of a neural network model into a hardware implementation is very inefficient, time consuming and error-prone, especially when it comes to creating and verifying variants of a hardware accelerator tailored to specific performance, power and area,” said Mo Movahed, Vice President and General Manager for High-Level Design, Verification and Power, Siemens Digital Industries Software. “By empowering scientists and AI experts to leverage industry-standard AI frameworks, such as neural network model design, and by seamlessly synthesizing these models into hardware designs optimized for power, performance, and area (PPA), we're opening a whole new realm of possibilities for AI and machine learning software engineers. Our new Catapult AI NN solution allows developers to automate and implement their neural network models for optimal PPA concurrently during the software development process, ushering in a new era of efficiency and innovation in AI development.”
As runtime AI and machine learning tasks migrate from the datacenter into everything from consumer appliances to medical devices, there is a rapidly growing requirement for "right-sized" AI hardware to minimize power consumption, lower cost and maximize end-product differentiation. However, most machine learning experts are more comfortable working with tools such as TensorFlow, PyTorch or Keras, rather than synthesizable C++, Verilog or VHDL. There has traditionally been no easy path for AI experts to accelerate their machine learning applications in a right-sized ASIC or SoC implementation.
The hls4ml initiative is intended to help bridge this gap by generating C++ from a neural network described in AI frameworks such as TensorFlow, PyTorch or Keras. The C++ can then be deployed for an FPGA, ASIC or SoC implementation.
Catapult AI NN extends the capabilities of hls4ml to ASIC and SoC design. It includes a dedicated library of specialized C++ machine learning functions that are tailored to ASIC design. Using these functions, designers can optimize PPA by making latency and resource trade-offs across alternative implementations from the C++ code. Moreover, designers can now evaluate the impact of different neural net designs to determine the best neural network structure for hardware.
"Particle detector applications have extremely stringent edge AI constraints," said Panagiotis Spentzouris, Fermilab Associate Lab Director for Emerging Technologies. “Through our collaboration with Siemens, we were able to develop Catapult AI NN, a synthesis framework that leverages the expertise of our scientists and AI experts without requiring them to become ASIC designers. Moreover, this powerful new framework is also ideal for seasoned hardware experts.”
Suggested Items
SMT Perspectives and Prospects: The AI Era, Part 3: LLMs, SLMs, and Foundation Models
10/09/2024 | Dr. Jennie Hwang -- Column: SMT Perspectives and ProspectsSince the introduction of ChatGPT on Nov. 30, 2022, and ChatGPT4 on March 14, 2023, large language models (LLMs) have been in everyday news and conversations. LLMs represent a significant advancement in AI, which has the potential to revolutionize multiple fields. This column offers a snapshot of LLMs from the user’s perspective.
BrainChip Introduces Lowest-Power AI Acceleration Co-Processor
10/02/2024 | BUSINESS WIREBrainChip Holdings Ltd, the world’s first commercial producer of ultra-low power, fully digital, event-based, brain-inspired AI, today introduced the Akida™ Pico, the lowest power acceleration co-processor that enables the creation of very compact, ultra-low power, portable and intelligent devices for wearable and sensor integrated AI into consumer, healthcare, IoT, defense and wake-up applications
SMT Prospects and Perspectives: AI Opportunities, Challenges, and Possibilities, Part 1
04/17/2024 | Dr. Jennie Hwang -- Column: SMT Perspectives and ProspectsIn this installment of my artificial intelligence (AI) series, I will touch on the key foundational technologies that propel and drive the development and deployment of AI, with special consideration of electronics packaging and assembly.
Fujitsu Unveils AI-powered Applications to Tame 5G+ Network Complexity
02/26/2024 | BUSINESS WIREFujitsu Network Communications, Inc. introduced Virtuora® IA, a collection of network applications powered by artificial intelligence (AI) that use network-focused machine learning (ML) models and inherent telecommunications expertise to significantly improve mobile network operators’ (MNOs) network performance with drastically simplified operations.
Keysight Demonstrates 6G Neural Receiver Design Flow in Collaboration with NVIDIA at Mobile World Congress 2024
02/19/2024 | BUSINESS WIREKeysight Technologies, Inc. has collaborated with NVIDIA to create a complete design flow for training and validating neural receivers that will be shown at Mobile World Congress Barcelona 2024.