Chiplet Architecture for AI Will Create New Demands for Assembly
May 28, 2024 | Nolan Johnson, SMT007 MagazineEstimated reading time: 2 minutes

As we examine the entire AI ecosystem more closely, it becomes clear that AI algorithms are intensely hungry for compute power. This demand is accelerating beyond the customary rate predicted by Moore’s Law, just as traditional semiconductor fabrication methods are failing to maintain Moore’s Law. It’s a real dilemma.
Those watching AI say that advanced packaging techniques, which have been in R&D development for some time, see AI as their killer app. AI is needed to propel these cutting-edge packages into the mainstream.
At a 2022 symposium on advanced packaging in Washington, D.C., I met Dale McHerron, a researcher on AI compute hardware. As we discussed IBM’s work in this area, Dale introduced me to Arvind Kumar, a principal research scientist and manager in AI hardware and chiplet architectures.
I reached out to Arvind to discuss his keynote presentation at the recent IMAPS conference where he discussed the AI hardware ecosystem and role of advanced packaging. Those in the assembly services industry know that any new packages will require accurate and reliable placement on the EMS manufacturing floor. Arvind shares his perspective and some predictions based on his research. It is also clear there is still much coordination and communication needed to make this work.
Nolan Johnson: What is chiplet architecture and why does it matter? How is advanced packaging moving forward?
Arvind Kumar: Chiplet architectures, which allow the partitioning of complex designs into tightly co-packaged sub-elements, are influencing the way we think about packaging. We would like to put more chips into a single package and have them talk to each other with high bandwidth, low latency, and low-energy interconnects. That goal is driving emerging packaging technologies to higher interconnect densities, more routing layers, and larger body sizes.
Johnson: Ever since semiconductors were developed, we’ve used the thought pattern of making bigger monolithic chips. Why the change?
Kumar: For a long time, the fundamental idea was that we could get more performance out of larger dies at the most advanced technology node. Fabricating all parts of a chip at the most advanced node is getting very expensive and has major yield challenges, so this drives us toward smaller die sizes. Additionally, we can partition the chip such that some parts that don’t scale well can remain in an older technology node. That's a very natural fit for chiplet architecture.
To continue reading this interview that originally appeared in the May 2024 issue of SMT007 Magazine, click here.
Suggested Items
TSMC and MediaTek Collaboration Paves the Way for Next-gen Wireless Connectivity
03/13/2025 | TSMCMediaTek and TSMC announced that they have jointly demonstrated the first silicon-proven power management unit (PMU) and integrated power amplifier (iPA) on TSMC’s N6RF+ process.
Ventec International Group Announce Launch of VT-47LT IPC4101 /126 Prepreg for HDI
03/12/2025 | Ventec International GroupVentec International Group announce launch of VT-47LT IPC4101 / 126 Prepreg. Are Microvia Failures Plaguing Your HDI Any Layer Designs? High-density interconnect (HDI) designs are pushing the envelope - higher layer count HDI relies on complex microvia designs: skip vias, staggered microvias, and stacked microvias in sequential laminations.
TCT Circuit Supply and Electra Polymers Announce New Strategic Partnership
03/12/2025 | Electra Polymers LtdTCT Circuit Supply (TCS) is excited to announce a new strategic partnership with Electra Polymers, a global leader in advanced specialty polymer products
Critical Manufacturing to Show You Might Need a New MES for Making Industry 4.0 A Reality at IPC APEX EXPO 2025
03/10/2025 | Critical ManufacturingCritical Manufacturing, a leader in advanced Manufacturing Execution Systems (MES) and a subsidiary of ASMPT, will show visitors to IPC APEX EXPO 2025 that the company’s MES - complete with extensive features specific to the electronics industry - can serve as a true Industry 4.0 platform. Any electronics manufacturer looking to turn its vision of digital transformation from concept into reality should prioritize visiting Critical Manufacturing at ASMPT SMT Booth 1813.
Multicircuits Expands Capabilities with State-of-the-Art Automated Copper Via Fill Process
03/10/2025 | MulticircuitsMike Thiel, president of Multicircuits, a leading provider of high-reliability printed circuit boards, has announced the addition of a state-of-the-art automated copper via fill process to their advanced manufacturing capabilities. This strategic investment enhances the company’s ability to deliver cutting-edge solutions for demanding industries, including aerospace, defense, medical, and high-speed telecommunications.