Reliability Comparisons of FPBGA Assemblies Under Hot/Cold Biased Thermal Cycle
August 6, 2024 | Thomas Sanders, Seth Gordon, Reza Ghaffarian, Jet Propulsion LaboratoryEstimated reading time: 1 minute

Current trends in microelectronic packaging technologies continue in the direction of smaller, lighter, and higher density packages. The telecommunications industry and particularly mobile/portable devices have a strong need for lighter and smaller products. The current emerging advanced packaging (AP) technologies, including system-in-package (SiP) and 2.5D/3D stacked packaging, added another level of complexity and challenges for implementation. The AP covers a set of innovative technologies that package integrated circuits (ICs) to increase functionality, improve performance, and provide added value1. In contrast, traditional packaging methods cover different I/O density and I/O pitch depending on the targeted application’s requirements, performance, and cost. The AP with heterogeneous integration added additional thermal challenges compared to a single die package2.
For single-die packaging technologies, the density requirement led to a progression in ball-grid-array (BGA) packaging technologies implemented in early 2000. With increased I/O density and decreased package size, the new generation of fine pitch BGA (FPBGA) packages, such as chip scale packages (CSPs) are introduced. A variety of studies have been conducted examining the reliability of printed circuit board assemblies (PCBAs) using BGAs and FPBGAs3-6. Recently, a guideline on BGA and die size BGA (DSBGA) was released for high-reliability applications with consideration of various environmental requirements for a number of NASA mission applications7. There are significant thermal cycle (TC) test data in the range of -55℃ and 125℃, or lower TC ranges, for commercial and even high-reliability applications, which is covered by IPC 97018.
However, thermal cycle test results under extreme cold and cryogenic conditions, representative of deep-space mission applications, is rare. Tudryn et al.9, presented detailed thermal cycle evaluation for Martian environment including die attachment with wire bonds. Recently, Ghaffarian10 and Ghaffarian et al11 compared the low temperature thermal cycles, including -110°C to 20°C for SnPb solder assemblies. The test results covered surface mount technology (SMT) packages including column grid array (CGA) to hand-soldered plated through-hole (PTH) ceramic pin grid array (PGA) assemblies.
To read the entire article, which originally published in the August 2024 issue of the SMT007 Magazine, click here.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Advanced Semiconductor Packaging Market Sees Rising Adoption Across Automotive and Industrial Sectors
10/14/2025 | openPRThe semiconductor packaging market size is estimated to reach at a CAGR of 7.2% during the forecast period (2024-2031).
Interposers, Substrates, and Advanced Manufacturing
10/13/2025 | Marcy LaRont, I-Connect007I attend a lot of industry trade shows and conferences. Lately, during conversations with technologists, I’ve noticed that there is some confusion about what exactly constitutes an interposer. One question I hear every so often is, “Are all interposers substrates?” The short answer to that question is no. But some interposers are, in fact, full substrates.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
10/10/2025 | Nolan Johnson, I-Connect007I-Connect007 has a new monthly digest newsletter, the Advanced Electronic Packaging Digest, and as I was scanning our advanced packaging newsfeeds this week, I came across a primer from tokenring.ai (republished through station WRAL, Raleigh, North Carolina), which I found quite useful. Whether you’re a designer, fabricator, or assembler, the package schemes being developed will change how you work, so be sure to keep your eye on the technological horizon and subscribe to the monthly Advanced Electronic Packaging Digest.
The Latest Issue: Advanced Electronics Packaging Digest to Explore Critical Minerals, Substrates, and Reliability Standards Driving Next-Gen Electronics
10/09/2025 | I-Connect007I-Connect007 is pleased to announce the upcoming issue of Advanced Electronics Packaging Digest (AEPD) on October 13, 2025, featuring expert insights on the technologies shaping the future of advanced packaging. As the electronics industry evolves, this issue takes a closer look at the materials, designs, and standards redefining performance and reliability across global markets.
Circular Packaging Market to Reach $98.0 Billion by 2035
10/08/2025 | Fact.MRThe market's journey from USD 45.8 billion in 2025 to USD 98.0 billion by 2035 represents substantial growth, the market will rise at a CAGR of 7.9% demonstrating the accelerating adoption of sustainable packaging systems and circular economy solutions across food & beverage, personal care, and e-commerce sectors.