-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueSoldering Technologies
Soldering is the heartbeat of assembly, and new developments are taking place to match the rest of the innovation in electronics. There are tried-and-true technologies for soldering. But new challenges in packaging, materials, and sustainability may be putting this key step in flux.
The Rise of Data
Analytics is a given in this industry, but the threshold is changing. If you think you're too small to invest in analytics, you may need to reconsider. So how do you do analytics better? What are the new tools, and how do you get started?
Counterfeit Concerns
The distribution of counterfeit parts has become much more sophisticated in the past decade, and there's no reason to believe that trend is going to be stopping any time soon. What might crop up in the near future?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
Reliability Comparisons of FPBGA Assemblies Under Hot/Cold Biased Thermal Cycle
August 6, 2024 | Thomas Sanders, Seth Gordon, Reza Ghaffarian, Jet Propulsion LaboratoryEstimated reading time: 1 minute
Current trends in microelectronic packaging technologies continue in the direction of smaller, lighter, and higher density packages. The telecommunications industry and particularly mobile/portable devices have a strong need for lighter and smaller products. The current emerging advanced packaging (AP) technologies, including system-in-package (SiP) and 2.5D/3D stacked packaging, added another level of complexity and challenges for implementation. The AP covers a set of innovative technologies that package integrated circuits (ICs) to increase functionality, improve performance, and provide added value1. In contrast, traditional packaging methods cover different I/O density and I/O pitch depending on the targeted application’s requirements, performance, and cost. The AP with heterogeneous integration added additional thermal challenges compared to a single die package2.
For single-die packaging technologies, the density requirement led to a progression in ball-grid-array (BGA) packaging technologies implemented in early 2000. With increased I/O density and decreased package size, the new generation of fine pitch BGA (FPBGA) packages, such as chip scale packages (CSPs) are introduced. A variety of studies have been conducted examining the reliability of printed circuit board assemblies (PCBAs) using BGAs and FPBGAs3-6. Recently, a guideline on BGA and die size BGA (DSBGA) was released for high-reliability applications with consideration of various environmental requirements for a number of NASA mission applications7. There are significant thermal cycle (TC) test data in the range of -55℃ and 125℃, or lower TC ranges, for commercial and even high-reliability applications, which is covered by IPC 97018.
However, thermal cycle test results under extreme cold and cryogenic conditions, representative of deep-space mission applications, is rare. Tudryn et al.9, presented detailed thermal cycle evaluation for Martian environment including die attachment with wire bonds. Recently, Ghaffarian10 and Ghaffarian et al11 compared the low temperature thermal cycles, including -110°C to 20°C for SnPb solder assemblies. The test results covered surface mount technology (SMT) packages including column grid array (CGA) to hand-soldered plated through-hole (PTH) ceramic pin grid array (PGA) assemblies.
To read the entire article, which originally published in the August 2024 issue of the SMT007 Magazine, click here.
Suggested Items
Toray Engineering Launches TRENG-PLP Coater: Panel Level Coater for Advanced Semiconductor Packaging
12/17/2024 | ACCESSWIREToray Engineering Co., Ltd. has developed the TRENG-PLP Coater, a high-accuracy coating device for panel level packaging PLP is an advanced semiconductor packaging technology, for which there is growing demand particularly from AI servers and data centers. Sales of the TRENG-PLP Coater will commence in December 2024.
Global Semiconductor Market to Grow by 15% in 2025, Driven by AI
12/13/2024 | IDCThe global demand for artificial intelligence (AI) and high-performance computing (HPC) will continue to rise, growing by over 15% in 2025, according to IDC ’s latest Worldwide Semiconductor Technology Supply Chain Intelligence report. Major application markets, ranging from cloud data centers to specific industry segments, are expected to undergo upgrades, heralding a new boom for the semiconductor industry.
The Shaughnessy Report: A Stack of Advanced Packaging Info
12/10/2024 | Andy Shaughnessy -- Column: The Shaughnessy ReportIt’s only fitting that this issue on advanced packaging and stackup features a “stackup” of “packages” on the cover. There’s certainly a lot to “unpack” in this issue. As advanced packaging moves further into the mainstream of PCB design, more PCB designers and design engineers are realizing this isn’t a plug-and-play technology. As we see in this issue, advanced packaging can have an impact on the entire design—the stackup in particular.
Sondrel Now Shipping Chips as Part of a Complete Turnkey Project
12/09/2024 | SondrelSondrel has announced that it is now shipping finished chips to a US customer as part of a full turnkey contract of concept to silicon. The chips are accelerators for AI, which is one of Sondrel’s speciality areas as it requires high performance, ultra-complex custom designs on leading edge nodes.
Advanced Packaging and Stackup Design: December 2024—Design007 Magazine
12/09/2024 | I-Connect007 Editorial TeamIn this month's issue,, we asked our expert contributors to discuss the impact of advanced packaging on stackup design—from SI and DFM challenges through the variety of material tradeoffs that designers must contend with in the arena of HDI and UHDI. And with a little research, planning, and collaboration with the fabricator, any seasoned PCB designer can utilize advanced packaging.