RTX to Develop Ultra-wide Bandgap Semiconductors for DARPA
October 3, 2024 | RTXEstimated reading time: 1 minute
Raytheon, an RTX business, has been awarded a three-year, two-phase contract from DARPA to develop foundational ultra-wide bandgap semiconductors, or UWBGS, based on diamond and aluminum nitride technology that revolutionize semiconductor electronics with increased power delivery and thermal management in sensors and other electronic applications.
During phase one of the contract, the Raytheon Advanced Technology team will develop diamond and aluminum nitride semiconductor films and their integration onto electronic devices. Phase two will focus on optimizing and maturing the diamond and aluminum nitride technology onto larger diameter wafers for sensor applications.
"This is a significant step forward that will once again revolutionize semiconductor technology," said Colin Whelan, president of Advanced Technology at Raytheon. "Raytheon has extensive proven experience developing similar materials such as Gallium Arsenide and Gallium Nitride for Department of Defense systems. By combining that pioneering history and our expertise in advanced microelectronics, we'll work to mature these materials towards future applications."
The unique material properties of UWBGS offer several advantages over traditional semiconductor technologies, enabling highly compact, ultra-high power radio frequency switches, limiters, and power amplifiers. Their high thermal conductivity also allows the ability to operate at higher temperatures and in more extreme environments.
The team's goal is to spearhead the development of these materials towards devices that are well suited for both existing and future radar and communication systems with extended capability and range, including cooperative sensing, electronic warfare, directed energy, and circuitry in high-speed weapon systems such as hypersonics.
Suggested Items
2025 ASEAN IT Spending Growth Slows to 5.9% as AI-Powered IT Expansion Encounters Post-Boom Normalization
06/26/2025 | IDCAccording to the IDC Worldwide Black Book: Live Edition, IT spending across ASEAN is projected to grow by 5.9% in 2025 — down from a robust 15.0% in 2024.
DownStream Acquisition Fits Siemens’ ‘Left-Shift’ Model
06/26/2025 | Andy Shaughnessy, I-Connect007I recently spoke to DownStream Technologies founder Joe Clark about the company’s acquisition by Siemens. We were later joined by A.J. Incorvaia, Siemens’ senior VP of electronic board systems. Joe discussed how he, Rick Almeida, and Ken Tepper launched the company in the months after 9/11 and how the acquisition came about. A.J. provides some background on the acquisition and explains why the companies’ tools are complementary.
United Electronics Corporation Advances Manufacturing Capabilities with Schmoll MDI-ST Imaging Equipment
06/24/2025 | United Electronics CorporationUnited Electronics Corporation has successfully installed the advanced Schmoll MDI-ST (XL) imaging equipment at their advanced printed circuit board facility. This significant technology investment represents a continued commitment to delivering superior products and maintaining their position as an industry leader in precision PCB manufacturing.
Insulectro & Dupont Host Technology Symposium at Silicon Valley Technology Center June 25
06/22/2025 | InsulectroInsulectro, the largest distributor of materials for use in the manufacture of PCBs and printed electronics, and DuPont, a major manufacturer of flex laminates and chemistry, invite fabricators, OEMS, designers, and engineers to attend an Innovation Symposium – Unlock the Power - this Wednesday, June 25, at DuPont’s Silicon Valley Technology Center in Sunnyvale, CA.
OKI, NTT Innovative Devices Establish Mass Production Technology for High-Power Terahertz Devices by Heterogeneous Material Bonding
06/21/2025 | BUSINESS WIREOKI, in collaboration with NTT Innovative Devices Corporation, has established mass production technology for high-power terahertz devices using crystal film bonding (CFB) technology for heterogeneous material bonding to bond indium phosphide (InP)-based uni-traveling carrier photodiodes (UTC-PD) onto silicon carbide (SiC) with excellent heat dissipation characteristics for improved bonding yields.