-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueInventing the Future with SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
Sales: From Pitch to PO
From the first cold call to finally receiving that first purchase order, the July PCB007 Magazine breaks down some critical parts of the sales stack. To up your sales game, read on!
The Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Smart and Compact Sensors with Edge-AI
April 16, 2025 | FraunhoferEstimated reading time: 3 minutes
A newly launched interdisciplinary research project involving universities of Brandenburg and research institutions is developing new technological approaches for better and more effective integration of artificial intelligence at the edges of IT networks, so-called “edges”. These developments could be of great importance in the future, particularly for applications in industrial electronics, medical technology and environmental monitoring. Fraunhofer IPMS is contributing its expertise in miniaturized sensor structures and the integration of electronic components.
In the project with the name “InSeKT” (German: Development of Intelligent Sensor Edge Technologies), the Technical University of Applied Sciences Wildau, the Leibniz Institute for High Performance Microelectronics (IHP) and the Fraunhofer-Institute for Photonic Microsystems IPMS are working on new hardware, software and sensor solutions to make better use of artificial intelligence (AI) right at the edges of IT networks. Artificial intelligence must process large amounts of data as quickly as possible. The aim of the project is to enable complex calculations directly where the data is generated, for example at the sensor itself.
Currently, data processing using AI is often carried out via central cloud computing solutions. The data is calculated on central servers, which means that large amounts of data are transmitted over long distances. As a result, data leaks can occur which creates opportunities for unauthorized third parties to attack. Decentralized data processing not only improves data protection, but also enables real-time capability of the systems, as data transmissions over long distances are avoided.
The project addresses the key factors for market acceptance: developing technologies for system integration, reducing costs, increasing reliability and increasing the degree of miniaturization. It is led by an interdisciplinary team from various institutions and specialist disciplines.
Advanced sensor technology to solve material and integration problems
The Cottbus-based ‘Integrated Silicon Systems’ branch of the Fraunhofer Institute for Photonic Microsystems IPMS is working on the functional expansion and integration of existing MEMS sensors for edge AI applications. Signal processing is integrated directly into the sensor and data can be collected directly where it is generated. The aim is to increase the adaptability of sensors to different application scenarios without having to replace the underlying hardware.
An initial central area of development at Fraunhofer IPMS is gas analysis using ion mobility spectrometers (IMS). An IMS makes it possible to detect ionizable analyte substances directly in the air, even at very low concentrations. Existing approaches lack sufficient miniaturization. A first IMS demonstrator, which is based on a FAIMS (field asymmetric-waveform ion mobility spectrometry) approach, has flexible electrode spacing, making it possible to overcome this hurdle.
Furthermore, the goal of a data-supported evaluation of photodetectors for the near-infrared wavelength range is being pursued. These are used, for example, in material analysis and recycling and even enable analysis through packaging. The focus lies on improving an Al-TiN-Si-Schottky detector component with cylindric pyramidal structures for a higher sensitivity and improved scalability by using cheaper materials.
A third area deals with the adapted use of capacitive micromechanical ultrasonic transducers (CMUTs) for improved imaging. CMUTs are highly sensitive ultrasound receivers due to their size and capacitive operating principle. Signal evaluation close to the sensor would enable faster imaging. “Later on, it will be possible to carry out very precise analyses of hand movements using an ultrasound signal based on that of bats, as well as measuring blood sugar using ultrasound,” explains Dr. Sebastian Meyer, Head of the ‘Integrated Silicon Systems’ department at Fraunhofer IPMS.
The TH Wildau and the Leibniz IHP will then use the generated sensor data to train edge AI systems for fast and precise data processing. The results of the project will enable further steps towards more intelligent and compact sensor systems.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Advanced Packaging-to-Board-Level Integration: Needs and Challenges
09/15/2025 | Devan Iyer and Matt Kelly, Global Electronics AssociationHPC data center markets now demand components with the highest processing and communication rates (low latencies and high bandwidth, often both simultaneously) and highest capacities with extreme requirements for advanced packaging solutions at both the component level and system level. Insatiable demands have been projected for heterogeneous compute, memory, storage, and data communications. Interconnect has become one of the most important pillars of compute for these systems.
Procense Raises $1.5M in Seed Funding to Accelerate AI-Powered Manufacturing
09/11/2025 | BUSINESS WIREProcense, a San Francisco-based industrial automation startup developing cutting-edge AI and remote sensing technologies for process manufacturers has raised $1.5 million in a seed funding round led by Kevin Mahaffey, Business Insider’s #1 seed investor of 2025 and HighSage Ventures, a Boston-based family office that primarily invests in public and private companies in the global software, internet, consumer, and financial technology sectors.
Zuken Announces E3.series 2026 Release for Accelerated Electrical Design and Enhanced Engineering Productivity
09/10/2025 | ZukenZuken reveals details of the upcoming 2026 release of E3.series, which will introduce powerful new features aimed at streamlining electrical and fluid design, enhancing multi-disciplinary collaboration, and boosting engineering productivity.
AI Infrastructure Boosts Global Semiconductor Revenue Growth to 17.6% in 2025
09/09/2025 | IDCAccording to the Worldwide Semiconduct o r Technology and Supply Chain Intelligence service from International Data Corporation (IDC), worldwide semiconductor revenue is expected to reach $800 billion in 2025, growing 17.6% year-over-year from $680 billion in 2024. This follows a strong rebound in 2024, when revenue grew by 22.4% year-over-year.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
09/05/2025 | Andy Shaughnessy, I-Connect007It’s almost fall here in Atlanta, and that means that the temperature is finally dropping. And it quit raining! It’s been raining since March, and I’m so over it, as the social influencers say. Last night we grilled out on the deck, and it wasn’t hot, and we didn’t get rained on. Life is good. It was a busy week in the industry. In this installment of my must-reads, we say goodbye to Walt Custer, the man who made PCB data points interesting for the rest of us.