-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueVoices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
The Essential Guide to Surface Finishes
We go back to basics this month with a recount of a little history, and look forward to addressing the many challenges that high density, high frequency, adhesion, SI, and corrosion concerns for harsh environments bring to the fore. We compare and contrast surface finishes by type and application, take a hard look at the many iterations of gold plating, and address palladium as a surface finish.
It's Show Time!
In this month’s issue of PCB007 Magazine we reimagine the possibilities featuring stories all about IPC APEX EXPO 2025—covering what to look forward to, and what you don’t want to miss.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
New Database of Materials Accelerates Electronics Innovation
May 2, 2025 | ACN NewswireEstimated reading time: 2 minutes
In a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers. The study, published in Science and Technology of Advanced Materials: Methods, also offers insights that could accelerate the development of next-generation electronic materials and energy storage technologies.
Large-scale dielectric materials database built with the open database project "Starrydata" and generation of a materials map using machine learning-based data visualization.Large-scale dielectric materials database built with the open database project "Starrydata" and generation of a materials map using machine learning-based data visualization.
AI-driven materials discovery has great potential to accelerate innovation, but it relies on large and diverse datasets. The lack of such data remains a major bottleneck in the field. To address this challenge, researchers used the Starrydata2 web system to collect experimental data on over 20,000 material samples from more than 5,000 publications. The NIMS team has developed a standardized approach to extract data from graphs, including temperature-dependent properties, which are often omitted in other databases. "What makes our work unique is the meticulous process of manually tracing graphs and correcting inconsistencies in original research papers to create a clean, high-quality dataset," the researchers said.
The database focuses on a specific class of materials necessary for electronics and is the largest ever reported, significantly surpassing previous collections. With this wealth of information, the team used machine learning (ML) to predict the properties of materials and how they would behave electronically.
Although the ML models were effective, they initially worked as "black boxes" — the researchers couldn’t see why the models made their predictions. To understand the context for predictions, the team created visual maps of the data, making complex information easier to interpret. They used clustering algorithms to automatically group similar materials. This analysis helped them spot patterns in how a material's composition affects its properties. The team was also able to categorize the materials into distinct groups, including seven important ferroelectric families, providing a global landscape of the entire compositional space.
The team took a closer look at ABO3 Perovskites, a family of materials which are essential components in everyday electronic devices and energy storage technologies, such as smartphones, computers, and solar cells. Their visualizations showed a simple link between the basic structure of the material and its dielectric permittivity, which coincides with previous academic knowledge.
This work advances our understanding of dielectric materials and moves research beyond traditional trial-and-error approaches. "By curating the largest dataset as ever and combining various machine-learning methods, we succeeded in visualizing the landscape of the entire compositional space in unprecedented detail," the team explained.
The NIMS team plans to make the dataset publicly available next year, allowing scientists worldwide to leverage it for new discoveries. Future work may involve expanding data collection to include manufacturing methods and processing conditions, allowing for more comprehensive predictions that would link production processes to material properties.
"We hope that this foundational work will inspire similar data collection initiatives and new approaches to materials discovery, ultimately leading to smarter materials development pathways that benefit society through improved electronic technologies," the researchers concluded.
Suggested Items
DuPont Announces Additional Leaders and Company Name for the Intended Spin-Off of the Electronics Business
04/29/2025 | PRNewswireDuPont announced Qnity Electronics, Inc. as the name of the planned independent Electronics public company that will be created through the intended spin-off of its Electronics business.
2024 Global Semiconductor Materials Market Posts $67.5 Billion in Revenue
04/29/2025 | SEMIGlobal semiconductor materials market revenue increased 3.8% to $67.5 billion in 2024, SEMI, the global industry association representing the electronics design and manufacturing supply chain, reported in its Materials Market Data Subscription (MMDS).
New RF Materials Offer Options for RF Designers
04/29/2025 | Andy Shaughnessy, Design007 MagazineThe RF materials arena has changed quite a bit in the past decade. The newest thermoset laminates boast performance numbers that are almost competitive with PTFE, but without the manufacturability challenges. At IPC APEX EXPO this year, I spoke with Brent Mayfield, business development manager at AGC Multi Material America. Brent walked through some recent innovations in RF materials, advances in resin systems, and the many design trade-offs for RF engineers to consider for each material set.
Discovery Opens Doors for Cheaper and Quicker Battery Manufacturing
04/23/2025 | PNNLThe discovery centers on sublimation, a commonly known process whereby under the right conditions, a solid turns directly into a vapor. Sublimation is what creates the tail of a comet as it flies by the sun. As the comet’s icy shell heats up, the ice instantly becomes vapor, instead of first melting into liquid water.
Real Time with... IPC APEX EXPO 2025: DuPont Electronics Materials and Innovations
04/23/2025 | Real Time with...IPC APEX EXPODuPont is many things to many markets, but DuPont Electronics Materials is, perhaps, a bit out of the DuPont "norm," developing specialized electronic materials that are particularly focused on challenging areas such as flex circuits, high power PCBs and products that must withstand harsh environments. At IPC APEX EXPO, Marcy LaRont sat down with Shannon Dugan from DuPont Electronics Materials to discuss some big news. They are being spun off into an independent entity with a new CEO having just been announced as the show wrapped.