-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueInner Layer Precision & Yields
In this issue, we examine the critical nature of building precisions into your inner layers and assessing their pass/fail status as early as possible. Whether it’s using automation to cut down on handling issues, identifying defects earlier, or replacing an old line...
Engineering Economics
The real cost to manufacture a PCB encompasses everything that goes into making the product: the materials and other value-added supplies, machine and personnel costs, and most importantly, your quality. A hard look at real costs seems wholly appropriate.
Alternate Metallization Processes
Traditional electroless copper and electroless copper immersion gold have been primary PCB plating methods for decades. But alternative plating metals and processes have been introduced over the past few years as miniaturization and advanced packaging continue to develop.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Estimated reading time: 1 minute
The Short Scoop: Improving Stencil Printing Results
As a continuation of my July 2014 column, this month I am providing possible answers to the frequently asked question, “Why am I getting poor printing results?”
There are a myriad of causes of poor print performance. The problem may stem simply from an inferior or worn-out stencil, which is typically the first place people focus when troubleshooting. However, the issue may also be caused by an improper aperture design or stencil thickness. Additionally, poor print performance might not be caused by the stencil itself, but rather an improper printer set-up, a non-optimal squeegee blade, or the rheology of the solder paste being used during processing.
To shed light on this month’s topic, I have compiled a list of the problems our users encounter and possible solutions..
To find the cause of the problem, it is helpful to break the stencil printing process into two phases. The first is the fill phase, when the aperture is filled with solder paste. The second phase is the transfer process, during which the paste is released from the aperture and transferred to the pad on the PCB.
PROBLEM: Insufficient solder volume transfer
Potential causes for insufficient solder transfer are often associated with:
1. Rough aperture walls that cause poor solder paste release, particularly as aperture sizes decrease
This problem has become more prevalent as board densities have increased and component sizes have shrunk. It is one situation that is directly related to the fabrication of the stencil. Different stencil fabrication techniques, such as laser cutting and electroforming, yield different levels of aperture roughness. Before selecting the stencil, evaluate the type of layout and configuration of the board, the types of components you are working with, and the board application. Then find the type of stencil that will give the paste release to meet those needs. The easiest to find and least expensive is an off-the-shelf laser-cut stencil. However, for more stringent applications where components are close together and very small, you might have to get a chemetch, NiCut, or electroform stencil to get side walls that are smooth enough for proper solder transfer, and therefore volume.Read the full column here.Editor's Note: This column originally appeared in the September 2014 issue of SMT Magazine.
More Columns from The Short Scoop
Adapting Stencils to Manufacturing Challenges in 2015The Short Scoop: Stencil Printing in PCB Cavities
The Short Scoop: Printing Two-level PCBs in One Step with a 3D Electroform Stencil
The Short Scoop: More Stencil Questions (and the Answers!)
The Short Scoop: Selecting a Stencil Frame
The Short Scoop: Screen Printing Solutions for Small Die & Precision
The Short Scoop: 10 Common Stencil Questions
The Short Scoop: Electroformed Stencils