Are There Advantages to Changing Your Registration System?
March 22, 2015 | Barry Matties, I-Connect007Estimated reading time: 9 minutes
I recently had a conversation with DIS's Tony Faraci at IPC APEX EXPO 2015, to learn more about their pinless registration system. What was most interesting to me are the potential advantages a pinless system offers and if so, why the process has not been widely adopted.
Barry Matties: Hello, Tony. Thanks for sitting down with me today. Could you please tell us about the DIS pinless registration system?
Tony Faraci: Yes, thanks, Barry. What is happening with this type of a system, as opposed to a conventional pin lamination technology, is that we are optically aligning all the internal layers of a panel. Conventional wisdom used to be that you would post-etch punch all your cores and then pin. Now, you are eliminating that whole process. You are eliminating pinning, you're eliminating all of that punching and all of that pin tooling and now we are optically aligning all the layers and tack bonding them together.
By optically aligning, all those mechanical pin tolerances are eliminated, and of course you are not limited to certain panel sizes. The layers are aligned optically and then we use an induction bonding system that actually bonds the layers together. The advantage here is that the registration can be checked before lamination, which really can't be done with any type of pinning system.
You can kind of do it with a riveting system, let's say, or eyelets, but with this type of system, now you can check your registration before going into the lamination press, then you laminate the panel, come out, and now you can again check the registration of that panel. Having the data immediately before and after lamination can show what's happening inside the press.
Besides this valuable data set, this is also telling you what our system is doing. It's giving you an overall view at different points of the process which they've never been able to do before. You can kind of do it with a riveting system but you're not going to do such high layer counts and it will not be repeatable. So DIS pinless technology is the next step up from pin because it eliminates all those mechanical problems.
Matties: For those who already have a pin system in place, are there any special processes or changes that they have to make?
Faraci: It changes a little bit in the process. What you're doing is using similar targets like they do on a punching machine, but now they are adding these welding coupons. They are just a quarter-inch by three-quarter-inch solid copper pads at four points on the panel that we'll use to tack bond.
Where it really changes is the reduced handling and lay-up. The machine is basically an optical lay-up machine, so instead of handling the panel once at post-etch punch and then going through oxide or oxide alternative, where there is some more stretching of the layer, and then laying up on mechanical pins, where most of the bulk error is, we’re only handling it once, at optical lay-up.
We're not selling a product that's competing against the post-etch punch; it's a process change. It eliminates that pin-up process and instead is optically aligning the layers; this really is the biggest change.
It's a little bit different in the process, so there is a learning curve. But the benefit for the customer is great, because now they can start looking at what's happening in the press. Today, most high-end shops work with pins, so what do they do, they lay up a book and you don't know if there's a shift -did it happen at lay-up, did it happen in the press, did it happen at transport?
So, that's one of the biggest changes. Another product that we developed about six years ago was a multi-camera system that allows us to check the layers front to back, in order to figure out where the best fit positions are for that layer. That also works well with our systems, because that data gets captured and it goes into our alignment systems.
Matties: How does that benefit?
Faraci: Let's say a customer is running higher-end boards. They can, if they have an LDI process for example, print a 2D bar code on every layer, serialize the core, and then our multi-camera system can actually measure that core and capture the positional data. And of course it's tied to that serial number.
Then when it gets to our alignment machines, they read that barcode and they know the positional data of that core, based on the eight targets, and now we can process the panel. So it enables all our existing two-camera machines—for example, what they have at DSG—once customers buy this unit, they’re able to have it work like an eight-camera system. Or you could use it off line just to measure panels to make sure that the layers are within tolerance before you use them at lay-up.
Matties: So, with your system the border is now smaller?Page 1 of 2
Suggested Items
Unlocking Advanced Circuitry Through Liquid Metal Ink
10/31/2024 | I-Connect007 Editorial TeamPCB UHDI technologist John Johnson of American Standard Circuits discusses the evolving landscape of electronics manufacturing and the critical role of innovation, specifically liquid metal ink technology, as an alternate process to traditional metallization in PCB fabrication to achieve ever finer features and tighter tolerances. The discussion highlights the benefits of reliability, efficiency, and yields as a tradeoff to any increased cost to run the process. As this technology becomes better understood and accepted, even sought out by customers and designers, John says there is a move toward mainstream incorporation.
Fresh PCB Concepts: The Critical Nature of Copper Thickness on PCBs
10/31/2024 | Team NCAB -- Column: Fresh PCB ConceptsPCBs are the backbone of modern electronics and the copper layers within these boards serve as the primary pathways for electrical signals. When designing and manufacturing PCBs, copper thickness is one of the most critical factors and significantly affects the board’s performance and durability. The IPC-6012F specification, the industry standard for the performance and qualification of rigid PCBs, sets clear guidelines on copper thickness to ensure reliability in different environments and applications.
Book Excerpt: The Printed Circuit Designer’s Guide to... DFM Essentials, Ch. 1
10/25/2024 | I-Connect007The guidelines offered in this book are based on both ASC recommendations and IPC standards with the understanding that some may require adjustment based on the material set, fabricator processes, and other design constraints. This chapter details high-frequency materials, copper foil types, metal core PCBs, and the benefits of embedded capacitance and resistor materials in multilayer PCBs.
The Cost-Benefit Analysis of Direct Metallization
10/21/2024 | Carmichael Gugliotti, MacDermid AlphaCarmichael Gugliotti of MacDermid Alpha discusses the innovative realm of direct metallization technology, its numerous applications, and significant advantages over traditional processes. Carmichael offers an in-depth look at how direct metallization, through developments such as Blackhole and Shadow, is revolutionizing PCB manufacturing by enhancing efficiency, sustainability, and cost-effectiveness. From its origins in the 1980s to its application in cutting-edge, high-density interconnects and its pivotal role in sustainability, this discussion sheds light on how direct metallization shapes the future of PCB manufacturing across various industries, including automotive, consumer electronics, and beyond.
Connect the Dots: Designing for Reality—Pattern Plating
10/16/2024 | Matt Stevenson -- Column: Connect the DotsIn the previous episode of I-Connect007’s On the Line with… podcast, we painted the picture of the outer layer imaging process. Now we are ready for pattern plating, where fabrication can get tricky. The board is now ready to receive the copper traces, pads, and other elements specified in the original CAD design. This article will lay out the pattern plating process and discuss constraints in the chemistries that must be properly managed to meet the customer's exacting manufacturing tolerances.