-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueIntelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
Do You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
IPC APEX EXPO 2025: A Preview
It’s that time again. If you’re going to Anaheim for IPC APEX EXPO 2025, we’ll see you there. In the meantime, consider this issue of SMT007 Magazine to be your golden ticket to planning the show.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
Developments with Metallic Thermal Interface Materials
April 7, 2015 | Indium CorporationEstimated reading time: 2 minutes

Reliability of electronic modules and systems is critical. For decades, the need for temperature modulation and control has been identified as a principal factor impacting semiconductor and packaging reliability. In most electronic systems, individual semiconductors are designed, manufactured, and sold for application within a system manufacturer’s product. The interface between the external mounting surface of the semiconductor package and any required thermal management component is increasingly the center of attention as efforts continue toward improving the performance and reliability of the overall system.
Thermal Interface Material Function
Thermal interface materials (TIM) provide a critical function on the external surface of the module or device and within a semiconductor package, such as a high-performance server processor module where several semiconductor die and one or more heat spreaders or a module lid are employed to provide the most effective heat transfer possible. The critical role of the thermal interface material is to improve the efficiency of heat transfer from the external mating surface of the semiconductor device and the surface to which it is attached, typically an air-cooled heat sink, liquid cold plate, or the metal surface of some other component.
Application Interface Conditions and Impact on Thermal Performance
The ideal interface consists of metal-to-metal contact across the contact area, which would require precision machining and polishing of the two surfaces to a degree and also add significant manufacturing costs to those components. In lieu of a set of ideal polished surfaces, the efficient TIM provides a very thin thermally conducting material which, given variation in metal surfaces, may vary in thickness through the interface. The thickness of the metal TIM at various points across the interface would be determined by several factors: the type of mechanical fasteners used to attach the device to the heat sink or cold plate, the amount of clamping force exerted, the location of the fasteners, and the degree of roughness and flatness of the two manufactured surfaces. The surface of a liquid cold plate, for example, may be a machined surface of a casting (which may expose internal voiding within the casting), the machined surface of an aluminum or copper cold plate, or the raw extruded surface of an aluminum cold plate, if no machining is specified. The mating surface of the heat sink or cold plate may also have variations due to warpage or bending (depending on the thickness), the care exercised when handling during manufacturing and assembly, and the relative clamping force applied versus the stiffness and strength of the heat sink or cold plate.
If mechanical fasteners such as screws or bolts are located only at the periphery of a large module, the flatness of the module metal baseplate can be altered as fasteners are torqued into place. This can change the physical characteristics of the interface when measured at a greater distance from the locations of the fasteners. For instance, standard power semiconductor modules, known as isolated gate bipolar transistors (IGBTs), are very common components used in electrical drives and machine tools, controlling wing flaps and actuators for aircraft, and switching devices within electrical inverters for propulsion powertrains in vehicles. Standard IGBT module footprints have industry-standard dimensions, with specified locations for fasteners, which are typically at the periphery of the device. There are also some industry designs for small modules, which include one or more fasteners in the center of the device.
Editor's Note: This article originally appeared in the March issue of SMT Magazine.
Suggested Items
RF PCB Design Tips and Tricks
05/08/2025 | Cherie Litson, EPTAC MIT CID/CID+There are many great books, videos, and information online about designing PCBs for RF circuits. A few of my favorite RF sources are Hans Rosenberg, Stephen Chavez, and Rick Hartley, but there are many more. These PCB design engineers have a very good perspective on what it takes to take an RF design from schematic concept to PCB layout.
Trouble in Your Tank: Causes of Plating Voids, Pre-electroless Copper
05/09/2025 | Michael Carano -- Column: Trouble in Your TankIn the business of printed circuit fabrication, yield-reducing and costly defects can easily catch even the most seasoned engineers and production personnel off guard. In this month’s column, I’ll investigate copper plating voids with their genesis in the pre-plating process steps.
Elephantech: For a Greener Tomorrow
04/16/2025 | Marcy LaRont, PCB007 MagazineNobuhiko Okamoto is the global sales and marketing manager for Elephantech Inc., a Japanese startup with a vision to make electronics more sustainable. The company is developing a metal inkjet technology that can print directly on the substrate and then give it a copper thickness by plating. In this interview, he discusses this novel technology's environmental advantages, as well as its potential benefits for the PCB manufacturing and semiconductor packaging segments.
Trouble in Your Tank: Organic Addition Agents in Electrolytic Copper Plating
04/15/2025 | Michael Carano -- Column: Trouble in Your TankThere are numerous factors at play in the science of electroplating or, as most often called, electrolytic plating. One critical element is the use of organic addition agents and their role in copper plating. The function and use of these chemical compounds will be explored in more detail.
IDTechEx Highlights Recyclable Materials for PCBs
04/10/2025 | IDTechExConventional printed circuit board (PCB) manufacturing is wasteful, harmful to the environment and energy intensive. This can be mitigated by the implementation of new recyclable materials and technologies, which have the potential to revolutionize electronics manufacturing.