New Light in Terahertz Window
June 24, 2015 | JülichEstimated reading time: 3 minutes
The terahertz range is one of the last sections of the electromagnetic spectrum – which extends from radio waves through optical applications right up to X-ray radiation – that is still rarely used in everyday life. The radiation is difficult to generate and until now this was only possible to a limited extent. Yet it has the potential for numerous applications. In Physical Review Letters, scientists at Jülich together with their international partners present a new concept that uses short-pulse lasers to expand the capabilities of terahertz sources currently being developed. An important part was played by calculations performed on Jülich’s supercomputer JUQUEEN.
Using detailed simulations, the scientists showed how the wavelengths and polarization of the generated terahertz radiation can be controlled via a strong external magnetic field. In the electromagnetic spectrum, terahertz waves occupy a band between microwaves and infrared radiation. The range from 0.1 THz to 30 THz, the so-called "terahertz gap", sits right between electronics and optics and is therefore not accessible through conventional electric devices or optical sources such as antennas and lamps. However, its special properties make THz radiation interesting for a variety of reasons: on the one hand, it penetrates textiles and plastics, while on the other, it is absorbed by many materials in a characteristic manner. The application spectrum ranges from non-invasive early cancer screening to food controls and body scans as well as ultrafast wireless connections.
Since the beginning of this century, femtosecond laser-based sources generating terahertz waves have been in use as comparatively compact and cheap alternatives to large particle accelerators. “This method works like a transformer that converts the high frequency of the incoming laser beam into the lower terahertz frequency range,” explains Prof. Paul Gibbon from the Jülich Supercomputing Centre (JSC).
One particularly favourable technique, which is currently being refined, utilizes two ultrashort laser pulses of different frequencies which are aimed at a gas target. The gas is ionized and electrons are released. In this way, the much faster laser oscillationsare transformed into terahertz waves with lower frequencies. "The strong electromagnetic fields of the two lasers cause the electrons to oscillate but not quite harmonically – or sinusoidally – but instead asymmetrically, which when averaged over the laser cycle produces a type of direct current," says Humboldt fellow Dr. Wei-Min Wang, who also works at the Jülich Supercomputing Centre (JSC). The frequencies would otherwise remain in the higher range of lasers. "In this way, a terahertz pulse is generated that lasts exactly one cycle – and then radiates outwards," says Wang.
Together with researchers at the University of Strathclyde and the Institute of Physics in Beijing, which is part of the Chinese Academy of Sciences, the two researchers have now published a paper on their new concept, which would enable the generation of terahertz radiation with tunable wavelengths over several cycles with a narrow bandwidth – characteristics that are similar to those of lasers in the optical range. It utilizes a strong magnetic field which is applied externally to the ionized gas and forces the free electrons in the plasma to gyrate like in a particle accelerator. This orbit determines the wavelength as well as the direction of oscillation of the resulting radiation. The optical properties can be tuned as required by altering the strength of the magnetic field – which could open the door to a wide variety of new applications.
“Spectroscopic and imaging techniques – like, for example, those used to investigate the dynamics of large biomolecules such as DNA – could particularly benefit from such a radiation source as it promises better temporal and spatial resolving power,” explains Wei-Min Wang. However, practically implementing it is not that easy, and an experimental verification has yet to be realised. "The concept requires a combination of powerful lasers and magnetic fields exceeding 100 tesla. Technically, this is extremely challenging, but it is possible within the given space and time scales," says Paul Gibbon. The scientists are performing complex simulation calculations on one of the fastest supercomputers in Europe – Jülich’s supercomputer JUQUEEN – to explore the properties of the new terahertz source.
Suggested Items
DARPA Selects Cerebras to Deliver Next Generation, Real-Time Compute Platform for Advanced Military and Commercial Applications
04/08/2025 | RanovusCerebras Systems, the pioneer in accelerating generative AI, has been awarded a new contract from the Defense Advanced Research Projects Agency (DARPA), for the development of a state-of-the-art high-performance computing system. The Cerebras system will combine the power of Cerebras’ wafer scale technology and Ranovus’ wafer scale co-packaged optics to deliver several orders of magnitude better compute performance at a fraction of the power draw.
Altair, JetZero Join Forces to Propel Aerospace Innovation
03/26/2025 | AltairAltair, a global leader in computational intelligence, and JetZero, a company dedicated to developing the world’s first commercial blended wing airplane, have joined forces to drive next-generation aerospace innovation.
RTX's Raytheon Receives Follow-on Contract from U.S. Army for Advanced Defense Analysis Solution
03/25/2025 | RTXRaytheon, an RTX business, has been awarded a follow-on contract from the U.S. Army Futures Command, Futures and Concepts Center to continue to utilize its Rapid Campaign Analysis and Demonstration Environment, or RCADE, modeling and simulation capability.
Ansys to Integrate NVIDIA Omniverse
03/20/2025 | ANSYSAnsys announced it will offer advanced data processing and visualization capabilities, powered by integrations with NVIDIA Omniverse within select products, starting with Fluent and AVxcelerate Sensors.
Altair Releases Altair HyperWorks 2025
02/19/2025 | AltairAltair, a global leader in computational intelligence, is thrilled to announce the release of Altair® HyperWorks® 2025, a best-in-class design and simulation platform for solving the world's most complex engineering challenges.