-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueIntelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
Do You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
IPC APEX EXPO 2025: A Preview
It’s that time again. If you’re going to Anaheim for IPC APEX EXPO 2025, we’ll see you there. In the meantime, consider this issue of SMT007 Magazine to be your golden ticket to planning the show.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
Pad Cratering Susceptibility Testing with Acoustic Emission
July 22, 2015 | B.S. Wong and J. Silk, Keysight Technologies, and R. Nordstrom, Ph.D., Emerson Process ManagementEstimated reading time: 16 minutes
Figure 2: Four-point bend setup.
Figure 3 shows a test board in the fixture. Four AE sensors are under the clamp shown in Figure 3. To setup the 4-point bend testing, a bare board was tested to failure, plus a sample of each laminate was tested to electrical failure and AE failure respectively. With enough load, it can be expected that laminate boards will emit away from any stress rising due to solder balls. The first AE on boards without components was found to be at a deflection of 11mm. This load level is well above the load levels under test of the populated boards. Testing bare boards before the populated boards is necessary for any new board laminate/layup or the substitution of lower frequency sensors.
Figure 3: Test board in fixture and location of AE sensors.
All AE equipment used in this study is off-the shelf commercial offerings. A high end AE measurement system was used with pre-amplifiers which provided enough versatility for multichannel low noise captures, 100-nanosecond global clock resolution of arrival times.
AE sensors with resonant frequency of 650kHz and
Event criteria and location analysis
The three primary settings for AE detection in this type of AE system are threshold, rearm and duration discrimination testing. The former setting is to distinguish the beginning of the event, the latter two the end of the event. The transient capture allows a known beginning and end to an event, and detection threshold plays a role in both. Typical concerns of the settings are sufficient sensitivity, noise rejection of low level noise, managing the trade-off between distinguishing events and allowing overlap from reflected events and getting as accurate an arrival time as possible. Fortunately, most of these are not issues in this board, sensor and strain rate combination. Thresholds between 30-40 dB AE are all viable with little noticeable difference. Lower levels may detect more background noise and more care is required at 30 dB to keep out external vibrational noise. As the threshold for detection is increased, the beginning of the wave is not captured as well, causing a small amount of error in location. A good starting point is a 40 dB threshold until there is more familiarity with the AE measurements. The end of the signal is also affected by threshold level. With this test, the strain rate is very high and the potential for event overlap will occur more readily at lower thresholds. Rearm times in the ballpark of 1 millisecond can be used without compromising distinct AE hit determination. If a 300 kHz sensor was substituted, the lower range of thresholds would be less of an option due to susceptibility to low frequency noise and overlapping signals. With this test, unlike other AE applications, these parameters are non-critical, at least with the 650 kHz sensor.
The largest experimental factors affecting the location results are choice of sensor array. Figure 3 shows the placement of the sensor array. It is desirable for all damage locations to be within the array as location errors increase significantly outside the sensor array. It is also important to have redundancy in the measurements. It takes 3 sensors to locate in a plane, 4 sensors give a redundancy factor that can help mitigate errant sensor results. More sensors would improve on this further, but at the cost of slowing testing. For positions, the sensors were placed just inside the 4 point bend far enough so that at peak deflection the sensors do not contact the 4 point bend fixtures and generate noise. Two of the most likely weak points on the board itself, the corners of the J4 package, sit close to the edge of the four point span and even closer to, if not outside the sensor array, make the coordinate location in this region much more error prone than other parts of the board.
The velocity for the laminates was determined in pretest for both orthogonal directions. Event builder timeouts were several times the expected time delay across the sensor array. A representative velocity is used for x and y coordinate determination with the understanding that it is a compromise velocity with regard to the asymmetric nature of composites. Simulated AE (Pencil Lead Breaks or PLB’s) was performed in a test pattern, specifically the corners of all 3 chips (12 total positions), and showed consistent location within 1-3 mm of each corner. This was performed on all boards prior to testing. It is expected that simulated AE will locate better than real, damage based AE, although the converse can also be stated; that the real damage can almost always be expected to locate less well than the PLB. Figure 4 shows an example of the output of the AE test, with mapped location of AE events and signal amplitude vs time chart.
Figure 4: An example of AE events.
Page 2 of 5
Suggested Items
KYZEN to Focus on Aqueous Cleaning and Stencil Cleaning at SMTA Juarez
05/20/2025 | KYZEN'KYZEN, the global leader in innovative environmentally responsible cleaning chemistries, will exhibit at the SMTA Juarez Expo and Tech Forum, scheduled to take place Thursday, June 5 at the Injectronics Convention Center in Ciudad Jarez, Chihuahua.
Koh Young Installs 24,000th Inspection System at Top 20 EMS
05/14/2025 | Koh YoungKoh Young, the global leader in True 3D measurement-based inspection and metrology solutions, proudly announces the installation of its 24,000th inspection system at a Top 20 Global EMS in Thailand.
Indium’s Karthik Vijay to Present on Dual Alloy Solder Paste Systems at SMTA’s Electronics in Harsh Environments Conference
05/06/2025 | Indium CorporationIndium Corporation Technical Manager, Europe, Africa, and the Middle East Karthik Vijay will deliver a technical presentation on dual alloy solder paste systems at SMTA’s Electronics in Harsh Environments Conference, May 20-22 in Amsterdam, Netherlands.
SolderKing Achieves the Prestigious King’s Award for Enterprise in International Trade
05/06/2025 | SolderKingSolderKing Assembly Materials Ltd, a leading British manufacturer of high-performance soldering materials and consumables, has been honoured with a King’s Award for Enterprise, one of the UK’s most respected business honours.
Knocking Down the Bone Pile: Gold Mitigation for Class 2 Electronics
05/07/2025 | Nash Bell -- Column: Knocking Down the Bone PileIn electronic assemblies, the integrity of connections between components is paramount for ensuring reliability and performance. Gold embrittlement and dissolution are two critical phenomena that can compromise this integrity. Gold embrittlement occurs when gold diffuses into solder joints or alloys, resulting in mechanical brittleness and an increased susceptibility to cracking. Conversely, gold dissolution involves the melting away of gold into solder or metal matrices, potentially altering the electrical and mechanical properties of the joint.