Plans to Develop 3D-printed Graphene Batteries
August 13, 2015 | Manchester Metropolitan UniversityEstimated reading time: 2 minutes

Longer-lasting batteries could be 3D printed from graphene ink to tackle rising demand for energy storage products in household devices or renewable energy systems.
Professor Craig Banks from Manchester Metropolitan University is leading the new project to develop a desktop printer to create batteries, supercapacitors and energy storage devices for phones or tablets, and solar, wind and wave power storage.
Researchers are analysing new techniques for rapid 3D printing with conductive graphene ink to create the batteries, funded by £500,000 from the EPSRC.
By incorporating graphene ink and creating novel 3D structures, it should increase the charge storage of batteries to meet possible future demands.
Super batteries
Prof Banks, Associate Dean for Research and Professor in Electrochemical and Nanotechnology, said: "Energy storage systems (ESS) are critical to address climate change and, as clean energy is generated through a variety of ways, an efficient way to store this energy is required. Lithium and sodium ion batteries and super/ultracapacitors are promising approaches to achieve this. This project will be utilising the reported benefits of graphene - it is more conductive than metal - and applying these into ESS. In addition to the choice of material, the overall architecture of ESS are of critical importance. The architecture of ESS can be improved through the use of 3D structures, which have high surface areas, good electrical properties and hierarchical pore structures/porous channels. We're trying to achieve a conductive ink that blends the fantastic properties of graphene with the ease of use of 3D printing to be manipulated into a structure that's beneficial for batteries and super capacitors."
'Plug in and go'
Current techniques use 'semi-graphene' inks that contain graphene but also carbon black and graphite, thus reducing the material's performance. The process of 3D printing also needs to be refined as each layer that is printed has to be cured an hour before another layer can applied.
Prof Banks added: "We need to figure out a way to cure it directly, possibly by shining a UV light on to it, as anything above a micron level takes a long time. deally, we could have the brilliant scenario where you just plug in and go - printing whatever structure you want out of graphene from a machine on your desk."
The project runs for three and a half years. Graphene was discovered at the University of Manchester in 2004. It is 200 times stronger than steel and is a highly efficient conductor of heat and energy.
Suggested Items
Real Time with... IPC APEX EXPO 2025: Emerging Trends in Design and Technology
04/16/2025 | Real Time with...IPC APEX EXPOAndy Shaughnessy speaks with IPC design instructor Kris Moyer to discuss emerging design trends. They cover UHDI technology, 3D printing, and optical data transmission, emphasizing the importance of a skilled workforce. The role of AI in design is highlighted, along with the need for understanding physics and mechanics as designs become more complex. The conversation concludes with a focus on enhancing math skills for better signal integrity.
Real Time with... IPC APEX EXPO 2025: Transition Automation Focusing on Security Coatings and Squeegee Technology
04/16/2025 | Real Time with...IPC APEX EXPOMark Curtin, President of Transition Automation, gives an update on recent innovations at his company. He highlights a record sales month and their new focus on security coatings to fight counterfeiting. Mark explains the engineering behind their durable squeegees, the importance of maintenance, and the value of considering overall costs over just price.
Elephantech: For a Greener Tomorrow
04/16/2025 | Marcy LaRont, PCB007 MagazineNobuhiko Okamoto is the global sales and marketing manager for Elephantech Inc., a Japanese startup with a vision to make electronics more sustainable. The company is developing a metal inkjet technology that can print directly on the substrate and then give it a copper thickness by plating. In this interview, he discusses this novel technology's environmental advantages, as well as its potential benefits for the PCB manufacturing and semiconductor packaging segments.
Flexible Thinking: Flexible Circuit Technology—Looking Back and Forward
03/03/2025 | Joe Fjelstad -- Column: Flexible ThinkingFlexible circuit technology came on the scene as a solution largely for niche applications, however, the technology has emerged in recent years as a cornerstone of modern electronics. Today, the technology is enabling a broad range of new product designs across industries. From wearable devices and medical implants to foldable smartphones and numerous automotive applications, flexible circuits are arguably at the heart of much of the next generation of innovations.
Yamaha Motor to Launch New YRP10e Entry-Level Solder Paste Printer
02/26/2025 | Yamaha Motor Europe Robotics, SMT SectionYamaha Motor Europe Robotics SMT Section announces that it will release the new YRP10e solder paste printer on April 1 of this year.