New Battery Demos
August 19, 2015 | University of MarylandEstimated reading time: 1 minute
LiPON is a solid electrolyte material used in thin-film microbatteries because it allows lithium to move through a network of phosphorus, nitrogen and oxygen. So far, however, its use has been limited to flat thin-film structures. Shifting from flat to 3D geometry would allow for higher performing batteries, but it is hard to deposit LiPON on a 3-D structure using current techniques.
Alexander Kozen, a graduate student in UMD’s department of Materials Science and Engineering, and his colleagues used atomic layer deposition to reach where conventional techniques like sputtering could not, enabling fabrication of future high performance 3D solid state batteries with challenging geometries.
One of the advantages of ALD is that it can be used to make layers of extremely precise and uniform thickness. This use of ALD to fabricate the solid electrolyte also beats out deposition processes requiring high temperatures, which limit possible substrates that can be used for the batteries.
In a paper soon to be published in Chemistry of Materials, the researchers used a state-of-the-art combination deposition and characterization system in the ALD NanoStructures Laboratory at UMD to develop and characterize the ALD process for LiPON. They determined that the chemistry is vital to the performance of the solid electrolyte: as the content of the nitrogen with the lithium electrolyte is varied the conductivity of the material changes. This was the key to making a highly ion-conductive material -- in fact, the most highly-conductive solid electrolyte using ALD yet made.
The researchers initially compared three types of precursors to decide which is most compatible with the ALD process and allows the amount of nitrogen in the thin films to be changed. Next, they developed a complex ALD “recipe” to allow fabrication of the solid electrolyte material. They also built a model battery electrode with varied thickness of LiPON to demonstrate the effectiveness of their solid electrolyte, and showed that the ALD-deposited LiPON had the highest conductivity to date.
The research was funded by DOE's Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center. Kozen worked with Liangbing Hu (MSE/UMERC), Sang Bok Lee (Chemistry and Biochemistry/KAIST and ChBE/MSE affiliate), deputy director of the NEES center and Gary Rubloff (MSE/NanoCenter), director of the NEES Center.
Suggested Items
New Database of Materials Accelerates Electronics Innovation
05/05/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
Micron Announces Business Unit Reorganization to Capitalize on AI Growth Across All Market Segments
04/23/2025 | MicronMicron Technology, Inc., a leader in innovative memory and storage solutions, announced a market segment-based reorganization of its business units to capitalize on the transformative growth driven by AI, from data centers to edge devices.
Connected Commercial Drone Market to Reach $37.3 Billion Worldwide by 2029
04/04/2025 | Berg InsightBerg Insight, a leading IoT market research provider, today released a new report covering connected commercial drones used for industrial and governmental purposes.
Boulder Scientific Company Completes Investments to serve Polyolefins, Electronics, Aerospace and Defense Sectors
03/14/2025 | PRNewswireBoulder Scientific Company (BSC) announces completion of several investments at its Mead and Longmont, Colorado manufacturing facilities to support customers in the polyolefins, electronics, aerospace and defense sectors.