Translucent Li-ion Battery Charges Itself by Using Sunlight
September 3, 2015 | NikkeiEstimated reading time: 1 minute
A Japanese research group prototyped a translucent lithium-ion (Li-ion) rechargeable battery that can charge itself by using sunlight.
With the battery, the group aims to realize a "smart window," which is an almost transparent window that functions both as a large-area rechargeable battery and as a photovoltaic cell (when the window receives sunlight, it is pigmented, lowering light transmittance).
The group is led by Mitsunobu Sato, president of Kogakuin University and professor at the Department of Applied Physics, School of Advanced Engineering of the university. The battery was exhibited at Innovation Japan 2015, a trade show that took place from Aug. 27 and 28, 2015, in Tokyo.
Translucent Li-ion battery announced in 2013
The group developed a translucent Li-ion rechargeable battery and announced it in a thesis in 2013.
The main component of the electrolyte used for the positive electrode of the battery is Li3Fe2(PO4)3 (LFP). And those of the electrolyte used for the negative electrode are Li4Ti5O12 (LTO) and LiPF6 (lithium hexafluorophosphate). Those material are commonly used for Li-ion rechargeable batteries. However, oxides are basically transparent, and the thicknesses of the positive and negative electrodes are only 80nm and 90nm, respectively, realizing a high light transmittance.
The light transmittance for green light (wavelength: about 550nm) is about 60% after discharging. It lowers to about 30% after charging because the density of lithium changes at the electrodes and the electronic state (valence) of the material changes.
The output voltage of the battery is about 3.6V. And the research group confirmed 20 charge-discharge cycles.
Latest battery
This time, the group exhibited a device that has not been announced in a thesis. It was made by making some changes to the materials of the translucent Li-ion battery announced in 2013 so that electrons excited by light coming to the negative electrode can be used to charge the battery.
At the trade show, the group showed the results of an experiment in which optical charge and discharge are repeated five times by applying near-ultraviolet light with an output of 10mW/cm2, which is about 1/10 that of sunlight.
Suggested Items
New Database of Materials Accelerates Electronics Innovation
05/05/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
Micron Announces Business Unit Reorganization to Capitalize on AI Growth Across All Market Segments
04/23/2025 | MicronMicron Technology, Inc., a leader in innovative memory and storage solutions, announced a market segment-based reorganization of its business units to capitalize on the transformative growth driven by AI, from data centers to edge devices.
Connected Commercial Drone Market to Reach $37.3 Billion Worldwide by 2029
04/04/2025 | Berg InsightBerg Insight, a leading IoT market research provider, today released a new report covering connected commercial drones used for industrial and governmental purposes.
Boulder Scientific Company Completes Investments to serve Polyolefins, Electronics, Aerospace and Defense Sectors
03/14/2025 | PRNewswireBoulder Scientific Company (BSC) announces completion of several investments at its Mead and Longmont, Colorado manufacturing facilities to support customers in the polyolefins, electronics, aerospace and defense sectors.