A Fast Cell Sorter Shrinks to Cell Phone Size
September 24, 2015 | Pennsylvania State UniversityEstimated reading time: 3 minutes
Commercially available cell sorters can rapidly and accurately aid medical diagnosis and biological research, but they are large and expensive, present a biohazard and may damage cells. Now a team of researchers has developed a cell sorter based on acoustic waves that can compete with existing fluorescence-activated cell sorters and is an inexpensive lab on a chip.
"The current benchtop cell sorters are too expensive, too un-safe, and too high-maintenance," said Tony Jun Huang, Penn State professor of engineering science and mechanics. "More importantly, they have very low biocompatibility. The cell-sorting process can reduce cell viability and functions by 30 to 99 percent for many fragile or sensitive cells such as neurons, stem cells, liver cells and sperm cells. We are developing an acoustic cell sorter that has the potential to address all these problems."
Over the past decade, microfluidic cell sorters have emerged as a promising new tool for single cell sequencing, rare cell isolation, and drug screening. However, many of these microfluidic devices operate at only a few hundred cells per second, far too slow to compete with commercial devices that operate on the order of tens of thousands of operations per second. The Penn State system can sort about 3,000 cells per second, with the potential to sort more than 13,000 cells per second.
The researchers achieve the speed by using focused interdigital transducers to create standing surface acoustic waves. When the waves are not focused, the acoustic field spreads out, slowing the sorting process. The narrow field allows the sorting to take place at high speed while gently manipulating individual cells.
"Our high-throughput acoustic cell sorter is expected to maintain cell integrity by preserving not only high viability, but also other cellular features such as gene expression, post translational modification, and cell function," said Huang. "The acoustic power intensity and frequency used in our device are in a similar range as those used in ultrasonic imaging, which has proven to be extremely safe for health monitoring, even during various stages of pregnancy. With the gentle nature of low-power acoustic waves, I believe that our device has the best chance of preserving cell integrity, even for fragile, sensitive cells. Such an ability is important for numerous applications such as animal reproduction, cell immunotherapy, and biological research."
Because the device is built on a lab-on-a chip system, it is both compact and inexpensive -- about the size and cost of a cell phone in its current configuration. With the addition of optics, the device would still be only as large as a book. The researchers fabricated the acoustic cell sorter in Penn State's Nanofabrication Laboratory using standard lithography techniques.
"Just like using a lens to focus light, we design focused interdigital transducers to modify the wave front of acoustic waves and finally confine the waves in a small area, which is comparable with the size of sorting targets," said Liqiang Ren, a graduate student in Huang's group. "The focused acoustic waves have shown better performance in terms of sorting resolution and energy-efficiency than the existing acoustic methods. To the best of our knowledge, our device demonstrates the fastest operation time among all existing acoustic cell sorters."
The researchers, who are from Penn State, Ascent Bio-Nano Technologies and the National Heart, Lung and Blood Institute of the National Institutes of Health, published their work in a recent issue of Lab on a Chip.
"Cell sorting is widely used in many areas of biology to characterize and separate cellular populations of interest," said Philip McCoy, National Heart, Lung, and Blood Institute. "The cytometer size, price, and biohazard concerns remain factors that have prevented this technology from being even more widespread. Microfluidic cell sorting is revolutionary for the fields of cell biology and immunology, as well as other fields in biology, in concomitantly overcoming all of these obstacles. It is quite easy to envision applications for this technology in diverse environments from a family doctor's office to field studies in limnology."
In future work, the researchers plan to integrate their acoustic cell-sorting unit with an optical cell-detecting unit with the goal of increasing throughput to 10,000 events per second.
Additional authors include Yuchao Chen, Peng Li, Zhangming Mao, Po-Hsun Huang, Joseph Rufo and Feng Guo, all of Penn State, Lin Wang of Ascent Bio-Nano Technologies and Stewart J. Levine, National Heart, Lung, and Blood Institute.
The National Institutes of Health, the National Science Foundation, and the Penn State Center for Nanoscale Science supported this work. Portions of the work were performed at the Penn State Nanofabrication Laboratory, a node of the NSF-funded National Nanotechnology Infrastructure Network.
Suggested Items
SEMICON Europa 2025 Call for Abstracts Opens for Advanced Packaging Conference and MEMS & Imaging Summit
05/05/2025 | SEMISEMI Europe announced the opening of the call for abstracts for SEMICON Europa 2025, to be held November 18-21 at Messe München in Munich, Germany. Selected speakers will share their expertise at the Advanced Packaging Conference (APC), MEMS & Imaging Sensors Summit, and during presentations on the show floor.
Summit Interconnect Hollister Elevates PCB Prototyping with New TiTAN Direct Imaging System from Technica USA
05/01/2025 | Summit Interconnect, Inc.Summit Interconnect’s Hollister facility has recently enhanced its quick-turn PCB prototyping capabilities by installing the TiTAN PSR-H Direct Imaging (DI) system.
New High Power 3D AXI for Power Electronics from Test Research, Inc.
04/17/2025 | TRITest Research, Inc. (TRI), a leading provider of Test and Inspection solutions for the electronics manufacturing industry, proudly announces the launch of the 3D AXI TR7600HP system. Designed for power semiconductor inspection, the TR7600HP enhances accuracy and efficiency in detecting defects in components such as IGBTs, MOSFETs, SiC inverters, and Paladin Connectors.
Real Time with... IPC APEX EXPO 2025: MivaTek is Revolutionizing Circuit Board Manufacturing with DART Technology
04/02/2025 | Real Time with...IPC APEX EXPOBrendan Hogan from MivaTek Global discusses the company's focus on direct imaging for circuit boards and semiconductors. MivaTek is introducing DART technology for dynamic feature size adjustments. This technology enhances precision, improving registration and throughput.
Real Time with... IPC APEX EXPO 2025: Schmoll America—Committed to Supporting Customers
03/31/2025 | Real Time with...IPC APEX EXPOKurt Palmer of Schmoll America and Stephan Kunz of Schmoll Maschinen GmbH had a great show, reporting solid attendance and good opportunities, as Schmoll America celebrates its first anniversary. With a booth full of equipment for attendees to see and touch, they showcased unique products like the Pico laser and X-ray machine, and discussed plans for a new facility.