-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Essential Guide to Surface Finishes
We go back to basics this month with a recount of a little history, and look forward to addressing the many challenges that high density, high frequency, adhesion, SI, and corrosion concerns for harsh environments bring to the fore. We compare and contrast surface finishes by type and application, take a hard look at the many iterations of gold plating, and address palladium as a surface finish.
It's Show Time!
In this month’s issue of PCB007 Magazine we reimagine the possibilities featuring stories all about IPC APEX EXPO 2025—covering what to look forward to, and what you don’t want to miss.
Fueling the Workforce Pipeline
We take a hard look at fueling the workforce pipeline, specifically at the early introduction of manufacturing concepts and business to young people in this issue of PCB007 Magazine.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
IBEX Sheds New Light on Solar System Boundary
October 21, 2015 | NASAEstimated reading time: 2 minutes
In 14 papers published in the October 2015 Astrophysical Journal Supplement, scientists present findings from NASA’s Interstellar Boundary Explorer, or IBEX, mission providing the most definitive analyses, theories and results about local interstellar space to date.
IBEX uses energetic neutral atom imaging to examine how our heliosphere, the magnetic bubble in which our sun and planets reside, interacts with interstellar space. IBEX created the first global maps showing these interactions and how they change over time. IBEX also directly measures interstellar neutral atoms flowing into the solar system; the journal’s special issue focuses on these particles.
“Over the past six years, this fundamental work focused on our place in the solar system has become the gold standard for understanding our sun, our heliosphere and the interstellar environment around us,” said David McComas, principal investigator of the IBEX mission at the Southwest Research Institute, or SwRI, in San Antonio, Texas.
Eight papers highlight the interstellar helium measurements taken by IBEX and the joint European Space Agency and NASA Ulysses spacecraft, which launched in 1990. These are the only two spacecraft to have directly measured the local interstellar flow of these helium atoms. The studies resolved an inconsistency in the direction and temperature of the interstellar flow in the data gathered by Ulysses compared to those taken by IBEX. Both data sets now affirm that the local interstellar flow is significantly hotter than believed previously based on the Ulysses observations alone, and provide insight into the direction the heliosphere is moving through the local material in the galaxy, as well as how fast it is traveling.
Two papers examine aspects of determining the composition of interstellar particles, looking closely at oxygen, helium, and neon, as well as how those and other particles are effectively measured. The final four papers discuss analysis techniques and related theoretical considerations, such as the effects of radiation pressure and how planetary gravity affects the course of neutral atoms as they travel through the heliosphere.
“Collectively, these papers represent a huge step forward in our understanding of the interstellar medium in the heliophysics community,” said McComas.
Initially a two-year mission, funding for IBEX has been extended through 2017, with the potential for mission extensions beyond that. IBEX is one of NASA’s series of low-cost, rapidly developed Heliophysics Small Explorer space missions.
"For a Small Explorer, the scientific output has been tremendous," said Eric Christian, IBEX mission scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "These 14 new papers seven years after launch show just how exciting a mission this is."
The Southwest Research Institute in San Antonio, Texas, leads IBEX with teams of national and international partners. NASA Goddard manages the Explorers Program for the agency's Heliophysics Division within the Science Mission Directorate in Washington.
Suggested Items
Real Time with... IPC APEX EXPO 2025: Schmoll America—Committed to Supporting Customers
03/31/2025 | Real Time with...IPC APEX EXPOKurt Palmer of Schmoll America and Stephan Kunz of Schmoll Maschinen GmbH had a great show, reporting solid attendance and good opportunities, as Schmoll America celebrates its first anniversary. With a booth full of equipment for attendees to see and touch, they showcased unique products like the Pico laser and X-ray machine, and discussed plans for a new facility.
Technica USA and CBT Introducing TiTAN Hybrid at IPC APEX EXPO 2025
03/18/2025 | Technica USAThe wait is over! Technica and CBT are proud to unveil TiTAN Hybrid, a groundbreaking innovation set to redefine the PCB industry. Designed for unmatched performance, efficiency, and adaptability, this cutting-edge laser imaging technology brings the future to you—today.
Teledyne Delivers 100th Infrared Detector for the Space Development Agency's Tracking Layer
03/06/2025 | TeledyneTeledyne Technologies Incorporated, a leading provider of advanced imaging solutions, is proud to announce its continuing pattern of on-time and early deliveries for the Space Development Agency's (SDA) proliferated constellation.
Singular Photonics Emerges from Stealth with Portfolio of SPAD-based Image Sensors
01/23/2025 | PRNewswireSingular Photonics emerged from stealth mode today, launching a new generation of image sensors based on single photon avalanche diodes (SPADs). A spin-out from the University of Edinburgh lab of digital imaging pioneer
Imec, Partners Unveil SWIR Sensor with Lead-free Quantum Dot Photodiodes
12/31/2024 | ImecAt the 2024 IEEE International Electron Devices Meeting (IEDM), imec, a world-leading research and innovation hub in nanoelectronics and digital technologies, and its partners in the Belgian project Q-COMIRSE, present a first of its kind prototype shortwave infrared image sensor with indium arsenide quantum dot photodiodes.