Doubling Up Improves Nanoring Design
November 12, 2015 | A*STAREstimated reading time: 2 minutes
A new nanoring design shows potential for generating short magnetic pulses and could be used to explore magnetic switching in materials.
A bimetallic nanoring that generates a short magnetic pulse when irradiated by a laser pulse has been theoretically studied by researchers at Singapore's Agency for Science, Technology and Research (A*STAR). It shows exciting potential for investigating magnetic switching and realizing rapid data storage.
Unlike their electrical and optical equivalents, ultrashort magnetic pulses have proved very difficult to generate. These pulses are needed to explore magnetic switching in materials — a process that underpins virtually all of today’s data storage technology. However, most methods for generating magnetic pulses use large-scale particle accelerators or are limited to specific materials and do not produce tightly confined magnetic fields.
Now, Guillaume Vienne and colleagues at the A*STAR Data Storage Institute have theoretically proposed a nanoring that consists of four alternating gold and nickel sectors (see image). Their calculations predict that this nanoring will generate magnetic pulses shorter than a trillionth of a second when irradiated by an ultrashort laser pulse.
The ring is essentially a nanoscale version of the setup used by physicist Thomas Seebeck in 1821 when he discovered that a temperature difference produces an electric voltage in certain materials — now known as the thermoelectric effect. The nanoring operates in a similar way to Seebeck’s setup in that heating it produces an uneven temperature distribution, which results in current flow and generates a magnetic field.
The nanoring is heated by irradiation with a laser pulse. Its small size gives rise to resonant collective oscillations of conduction electrons, known as plasmon resonance. This results in efficient and uneven heating, producing hot and cool spots in the ring between which currents flow as a result of the thermoelectric effect. Finally, these currents generate a magnetic pulse.
Vienne sees the nanoring as being unique. “There simply isn’t any source that produces a magnetic field that is so localized in both time and space. So it’s a kind of a new object,” he enthuses.
The four-sector nanoring has two significant advantages over a previous design that had only two sectors. It generates a higher current and hence a higher magnetic field. In addition, the four-sector nanoring has a lower maximum temperature, which is fortunate since the ring will melt if its maximum temperature exceeds its melting point.
The A*STAR team is currently collaborating with scientists at Southampton University in the United Kingdom to fabricate and characterize such a nanoring.
The researchers are enthusiastic about its potential. “There is much debate about how fast magnetization can be switched,” says Vienne. “Our nanoring should advance that debate.”
The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute. For more information about the team’s research, please visit the Advanced Concepts and Nanotechnology webpage.
Suggested Items
TRI Unveils New platform for Diverse Board Sizes Search Submit
07/14/2025 | TRITest Research, Inc. (TRI), the leading test and inspection systems provider for the electronics manufacturing industry, proudly introduces a new size configuration for SPI and AOI Models.
Specially Developed for Laser Plastic Welding from LPKF
06/25/2025 | LPKFLPKF introduces TherMoPro, a thermographic analysis system specifically developed for laser plastic welding that transforms thermal data into concrete actionable insights. Through automated capture, evaluation, and interpretation of surface temperature patterns immediately after welding, the system provides unprecedented process transparency that correlates with product joining quality and long-term product stability.
Smart Automation: The Power of Data Integration in Electronics Manufacturing
06/24/2025 | Josh Casper -- Column: Smart AutomationAs EMS companies adopt automation, machine data collection and integration are among the biggest challenges. It’s now commonplace for equipment to collect and output vast amounts of data, sometimes more than a manufacturer knows what to do with. While many OEM equipment vendors offer full-line solutions, most EMS companies still take a vendor-agnostic approach, selecting the equipment companies that best serve their needs rather than a single-vendor solution.
Keysight, NTT, and NTT Innovative Devices Achieve 280 Gbps World Record Data Rate with Sub-Terahertz for 6G
06/17/2025 | Keysight TechnologiesKeysight Technologies, Inc. in collaboration with NTT Corporation and NTT Innovative Devices Corporation (NTT Innovative Devices), today announced a groundbreaking world record in data rate achieved using sub-THz frequencies.
Priority Software Announces the New, Game-Changing aiERP
06/12/2025 | Priority SoftwarePriority Software Ltd., a leading global provider of ERP and business management software announces its revolutionary aiERP, leveraging the power of AI to transform business operations.