On the way to Multiband Solar Cells
November 13, 2015 | Lawrence Berkeley National LaboratoryEstimated reading time: 3 minutes
When visiting California’s central valley in the summertime, it’s hard to imagine that solar energy isn’t single-handedly meeting the west coast’s energy needs. But one problem with modern solar cells is that while the solar spectrum covers a wide range of energies they can only harness light of a single energy,. This means that very little of the available energy is actually captured.
One potential solution is an intermediate band solar cell, comprising an intermediate band built into a wide-gap semiconductor. But in order for the cell to work, incident photons must be able to transfer charge using all three band transitions (valence-intermediate ; intermediate-conducting ; and conducting-valence), in a process known as optical absorption. That’s the difficult part. Now, for the first time, Berkeley Lab researchers have engineered an alloy solar cell and demonstrated that optical transitions do indeed occur in all three cases.
“It’s difficult to find a material system with all three optical transitions, and it is even more difficult to show that the transitions occur simultaneously,” explains Wladek Walukiewicz, senior staff scientist at Berkeley Lab’s Materials Sciences Division. “Normally, people use selective excitation to test a material’s optical coupling. One light source induces a transition from the valence to intermediate band; and another from intermediate to conduction. But in this way, it’s very hard to tell which photon was the excitation soure.”
Walukiewicz authored a paper titled “Multicolor Electroluminescence from Intermediate Band Solar Cell Structures” about this research in the journal Advanced Energy Materials. Co-authors include Nair Lopez, Kin-Man Yu, and Tooru Tanaka.
Instead of looking for absorption of photons, Walukiewicz decided to experiment with photon generation. A semiconductor can be used in two ways: as in a solar cell, an absorber to produce electricity; or as in an light emitting diode (LED) where, in a process known as electroluminescence, application of external voltage produces light. The Berkeley team showed that application of a voltage to their previously developed intermediate band solar cell structures leads to emission of photons. They simultaneously observed two electroluminescence peaks corresponding to the optical transition energies expected in the cell structure.
“If you can observe electroluminescent emission, you can infer that absorption of the same energy will also occur,” adds Walukiewicz. “With a normal diode, you see one peak which is related to the bandgap. In our case, you see how two different gaps produce two color emissions.”
Wladek Walukiewicz, senior staff scientist at Berkeley Lab’s Materials Sciences Division
The key to success was the Walukiewicz team’s previous discovery of alloys that allowed them to engineer semiconductor band gaps. They showed that incorporating nitrogen into semiconductor gallium arsenide results in the formation of GaNAs alloy that has a third intermediate band. For this study, structural variations with a blocked intermediate band confirmed that electroluminescent peaks originated from transitions between the intermediate and the conduction and valence bands.
Not only did the experiment show the optical transitions which are key for an intermediate band solar cell to perform, but it also opened a potential for using modified cell structure as a multicolor light emitter.
“The direct demonstration of the optical coupling between different bands…will have a positive impact on the field of high efficiency solar cells,” says co-author Nair Lopez, a physicist now at Universidad Autónoma de Madrid. Now that optical transitions are proven to exist, she will “work on optimization of the material properties and device design to improve the solar power conversion efficiency. Additionally, we are trying with new alloys to produce multiband solar cells.”
To make an energy efficient technology, solar cell absorption must be improved. But proving that a single material can establish optical transitions across the solar spectrum is a critical step on the sunny path to a competitive product.
This research was funded by the U.S. Department of Energy’s Office of Science.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Electrodeposited Copper Foils Market to Grow by $11.7 Billion Over 2025-2032
09/18/2025 | Globe NewswireThe global electrodeposited copper foils market is poised for dynamic growth, driven by the rising adoption in advanced electronics and renewable energy storage solutions.
Alternative Manufacturing, Inc. (AMI) Announces Commitment to Excellence in Industrial, Defense, Aerospace, Renewables, and Robotics Markets
09/16/2025 | Alternative Manufacturing, Inc.Alternative Manufacturing, Inc. (AMI), a 100% employee-owned contract manufacturer, proudly reaffirms its leadership in the electronics manufacturing services (EMS) industry with a continued commitment to delivering high-quality PCBAs and box builds across the industrial, defense, aerospace, renewable energy, and robotics markets.
Elementary Mr. Watson: Running the Signal Gauntlet
09/11/2025 | John Watson -- Column: Elementary, Mr. WatsonIf you’ve ever run a military obstacle course, you know it’s less “fun fitness challenge” and more “how can we inflict as much pain in the shortest time possible?” You start fresh—chest out, lungs full of confidence, thinking you might even look good doing this—and 10 seconds later, you’re questioning all your life choices.
Hitachi Unveils $1B U.S. Investment in Critical Grid Infrastructure
09/05/2025 | Hitachi EnergyHitachi Energy, a wholly owned subsidiary of Hitachi, Ltd., and global leader in electrification, today announced a historic investment of more than $1 billion USD to expand the production of critical electrical grid infrastructure in the United States.
Ferric Launches New Integrated Voltage Regulator for AI and High-Performance Processors
08/27/2025 | BUSINESS WIREFe1766 delivers an unprecedented 160 A in the industry’s smallest IVR footprint, redefining chip-level and system-level power delivery for the AI era.