-
-
News
News Highlights
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueIntelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
Do You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
IPC APEX EXPO 2025: A Preview
It’s that time again. If you’re going to Anaheim for IPC APEX EXPO 2025, we’ll see you there. In the meantime, consider this issue of SMT007 Magazine to be your golden ticket to planning the show.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
Managing Big Data from an Analog World
November 18, 2015 | Chandran Nair, National InstrumentsEstimated reading time: 3 minutes

There once was a time when hardware sampling rates, limited by the speed at which analog-to-digital conversion took place, physically restricted how much data was acquired. But the advances in computing technology, including increasing microprocessor speed and hard-drive storage capacity, combined with decreasing costs for hardware and software, have provoked an explosion of data coming in unabated. Among the most interesting to the engineer and scientist is data derived from the physical world. This is analog data that is captured and digitized and otherwise known as “big analog Ddata.” It is collected from measurements of vibration, RF signals, temperature, pressure, sound, image, light, magnetism, voltage, and so on.
In the field of measurement applications, engineers and scientists collect vast amounts of data every minute. For every second that the Large Hadron Collider at the European Organization for Nuclear Research (CERN) runs an experiment, the instrument generates 40TB of data. For every 30 minutes that a Boeing jet engine runs, the system creates 10TB of operations information (Gantz, 2011).
In the age of big data, hardware is evidently no longer the limiting factor in acquisition applications, but the management of acquired data is. How do we store and make sense of data? How do we keep them secured? How do we future proof them? These questions become compounded when systems evolve to become more complex, and the amount of data required to describe those systems grow beyond comprehension. This inevitably results in longer project schedules and less efficiency in development. More advanced tools and smarter measurement systems will be essential to managing this explosion of data and help engineers make informed decisions faster.
For engineers, this means instrumentation must be smarter and sensors, measurement hardware, data buses, and application software need to work together to provide actionable data at the right time. The big data phenomenon adds new challenges to data analysis, search, integration, reporting, and system maintenance that must be met to keep pace with the exponential growth of data. And the sources of data are many. As a result, these challenges unique to big analog data have provoked three technology trends in the widespread field of data acquisition.
Contextual Data Mining
The physical characteristics of some real-world phenomena prevent information from being gleaned unless acquisition rates are high enough, which makes small data sets an impossibility. Even when the characteristics of the measured phenomena allow more information gathering, small data sets often limit the accuracy of conclusions and predictions in the first place.
Consider a gold mine where only 20% of the gold is visible. The remaining 80% is in the dirt where you can’t see it. Mining is required to realize the full value of the contents of the mine. This leads to the term “digital dirt,” meaning digitized data can have concealed value. Hence, data analytics and data mining are required to achieve new insights that have never before been seen.
Data mining is the practice of using the contextual information saved along with data to search through and pare down large data sets into more manageable, applicable volumes. By storing raw data alongside its original context or “metadata,” it becomes easier to accumulate, locate, and later manipulate and understand. For example, examine a series of seemingly random integers: 5126838937. At first glance, it is impossible to make sense of this raw information. However, when given context like (512) 683-8937, the data is much easier to recognize and interpret as a phone number.
Descriptive information about measurement data context provides the same benefits and can detail anything from sensor type, manufacturer, or calibration date for a given measurement channel to revision, designer, or model number for an overall component under test. In fact, the more context that is stored with raw data, the more effectively that data can be traced throughout the design life cycle, searched for or located, and correlated with other measurements in the future by dedicated data post-processing software.
Editor's Note: This article originally appeared in the November 2015 issue of SMT Magazine.
Suggested Items
AI Boom Drives Surge in Data Center Interconnect Demand; Global Market Value to Grow 14.3% in 2025
05/19/2025 | TrendForceTrendForce reports that leading global telecom providers such as SK Telecom and Deutsche Telekom are rolling out Agentic AI services for general users as generative AI becomes increasingly integrated into daily life in 2025.
FTG Achieves Major Milestone with TCCA Certification for Edge+ on Boeing 737NG Family
05/16/2025 | Globe NewswireFiran Technology Group Corporation (FTG) announced that its FLYHT subsidiary has been awarded a Supplemental Type Certificate (STC) by Transport Canada Civil Aviation (TCCA) for the AFIRS Edge+™ product on the Boeing 737NG family of aircraft.
Future-proofing Electronics: ChemFORWARD Works Toward Collaboration for Safer Chemistry
05/19/2025 | Rachel Simon, ChemFORWARDThe electronics industry is facing a critical juncture. As consumer demand for sustainable products rises and regulatory pressures intensify, companies must prioritize the safety of their products and processes. This means not only complying with evolving chemical restrictions but also proactively seeking safer alternatives.
Corning Collaborates with Broadcom to Accelerate AI Data Center Processing Capacity
05/14/2025 | BUSINESS WIRECorning Incorporated, a world leader in glass science and optical physics, today announced a collaboration with Broadcom Incorporated, a leading supplier in the semiconductor field, on a co-packaged optics (CPO) infrastructure that will significantly increase processing capacity within data centers.
Breaking Down Barriers: The Connectivity of Machines in SMT Production Lines
05/14/2025 | Bill Cardoso, Creative ElectronAs the world increasingly moves toward erecting trade barriers, we find ourselves in a paradox. Across the globe, the rise in tariffs and protectionist policies is creating a more fragmented global economy, with nations seeking to insulate themselves from external economic pressures. However, within the confines of the SMT production line, the trend is moving in precisely the opposite direction—toward greater connectivity, integration, and collaboration. Rather than isolating one machine from another, SMT production lines are increasingly interconnected, with data being shared across various stages of the process to improve quality, efficiency, and defect detection.