Ingestible Electronic Device that Can Monitor Vital Signs
November 20, 2015 | MITEstimated reading time: 4 minutes
Doctors currently measure vital signs such as heart and respiratory rate using techniques including electrocardiograms (ECG) and pulse oximetry, which require contact with the patient’s skin. These vital signs can also be measured with wearable monitors, but those are often uncomfortable to wear.
Inspired by existing ingestible devices that can measure body temperature, and others that take internal digestive-tract images, the researchers set out to design a sensor that would measure heart and respiratory rate, as well as temperature, from inside the digestive tract.
The simplest way to achieve this, they decided, would be to listen to the body using a small microphone. Listening to the sounds of the chest is one of the oldest medical diagnostic techniques, practiced by Hippocrates in ancient Greece. Since the 1800s, doctors have used stethoscopes to listen to these sounds.
The researchers essentially created “an extremely tiny stethoscope that you can swallow,” Swiston says. “Using the same sensor, we can collect both your heart sounds and your lung sounds. That’s one of the advantages of our approach — we can use one sensor to get two pieces of information.”
To translate these acoustic data into heart and breathing rates, the researchers had to devise signal processing systems that distinguish the sounds produced by the heart and lungs from each other, as well as from background noise produced by the digestive tract and other parts of the body.
The entire sensor is about the size of a multivitamin pill and consists of a tiny microphone packaged in a silicone capsule, along with electronics that process the sound and wirelessly send radio signals to an external receiver, with a range of about 3 meters.
In tests along the GI tract of pigs, the researchers found that the device could accurately pick up heart rate and respiratory rate, even when conditions such as the amount of food being digested were varied.
“The authors introduce some interesting and radically different approaches to wearable physiological status monitors, in which the devices are not worn on the skin or on clothing, but instead reside, in a transient fashion, inside the gastrointestinal tract. The resulting capabilities provide a powerful complement to those found in wearable technologies as traditionally conceived,” says John Rogers, a professor of materials science and engineering at the University of Illinois who was not part of the research team.
Page 2 of 3
Suggested Items
AIRO to Expand U.S. Manufacturing Footprint to Accelerate Advanced Drone Innovation and Strengthen Global Defense Capabilities
07/14/2025 | BUSINESS WIREAIRO, a global leader in advanced aerospace and defense technologies, announced plans to expand its U.S. footprint with the addition of a new manufacturing and engineering development facility.
Green Circuits to Exhibit Full-Service Electronics Manufacturing Solutions at 2025 SMD Symposium
07/02/2025 | Green CircuitsGreen Circuits, a full-service Electronics Manufacturing Services (EMS) partner to leading OEMs, is pleased to announce its participation in the 2025 SMD Symposium, taking place August 5-7 at the Von Braun Center in Huntsville, Alabama.
RTX, Shield AI Partner to Develop New Defense Capabilities
07/01/2025 | RTXRTX and Shield AI announced a new partnership to integrate Shield AI capabilities into select RTX defense products, like loitering munitions and sensors. This collaboration will deliver enhanced, autonomous capabilities to US and allied defense forces.
Lockheed Martin Completes Acquisition of Amentum’s Rapid Solutions Portfolio
07/01/2025 | Lockheed MartinLockheed Martin has closed its acquisition of the Rapid Solutions business of Amentum, an engineering and technology solutions company.
Saab Receives Order for Ground-Based Air Defense from Sweden
07/01/2025 | SaabSaab has received an order from the Swedish Defense Materiel Administration (FMV) for the mobile short-range air defense solution RBS 70 NG with missiles.