Nonlinear Excitation of Graphene Plasmons
November 24, 2015 | ICFOEstimated reading time: 1 minute
Surface plasmons in graphene offer a compelling platform for photonic technologies, exhibiting intriguing properties such as electro-optical tunability, a very small wavelength, and high electromagnetic field concentration. Graphene plasmons also exhibit a large bandwidth, extending into the far infrared. Some of these properties simultaneously make graphene plasmons difficult to excite and detect, due to the large mismatch between the wavelengths of free-space and plasmon fields, and the need for sources and detectors at unconventional frequencies.
An experimental research team led by Prof. Euan Hendry at Exeter University, in collaboration with the theory group of Prof. Darrick Chang at ICFO, has demonstrated an appealing alternative to exciting and detecting graphene plasmons, which was recently published in Nature Physics. In this work, the team demonstrates that graphene exhibits a giant nonlinear optical response, which can be used to convert free-space optical beams to plasmons of a well-defined frequency and direction via a coherent mixing process. The excitation of plasmons is inferred by a change in reflection of the input fields. Interestingly, all of the optical sources and detectors used in the experiment operated at visible wavelengths, yet it was possible to generate plasmons at frequencies down to the far infrared. The potential to excite and detect plasmons only with free-space optics, and at frequencies significantly different than that of the plasmons themselves, has the potential to significantly expand the technological possibilities for graphene plasmonics.
In this proof of principle experiment, conversion efficiencies of 10-5 were achieved between photons in the free-space beams and plasmons. It is anticipated that moderate improvements to the devices and setup can enable improvements in efficiencies by several orders of magnitude. Interestingly, in the current experiments, it could also be inferred that the second-order nonlinear coefficients of graphene are about 1000 times larger than in conventional nonlinear crystals. This suggests that graphene more generally constitutes a novel material for future nonlinear optical devices.
Suggested Items
Indium Experts to Present on Power Electronics at PCIM Europe 2025
04/17/2025 | Indium CorporationAs one of the leading materials providers to the power electronics assembly and e-Mobility industries, Indium Corporation experts will share their technical insight and knowledge on a variety of industry-related topics throughout PCIM Europe, May 6-8, in Nuremberg, Germany.
Indium to Feature Materials Solutions Powering Sustainability at PCIM Europe
04/15/2025 | Indium CorporationIndium Corporation specializes in power device packaging, offering a portfolio of advanced material solutions encompassing the entire assembly, including die-attach, top-side die interconnect, substrate-attach, package-attach, and PCB assembly.
Indium to Showcase Proven EV Products and High-Reliability Alloys at Productronica China
03/26/2025 | Indium CorporationAs a global materials supplier and trusted partner in electric vehicle (EV) and e-Mobility manufacturing, Indium Corporation® is proud to showcase its high-reliability alloys and soldering solutions at Productronica China, March 26-28, in Shanghai, China.
Electroninks' MOD and iSAP Game Changers
03/25/2025 | Marcy LaRont, PCB007 MagazineElectroninks, a prominent player in particle-free conductive inks, recently announced an exciting new range of metal-complex inks for ultra high density interconnect (UHDI) technology. At the SMTA UHDI Symposium in January, Mike Vinson, COO of Electroninks, gave a presentation on this line of MOD inks, which are versatile and suitable for a range of applications that require ultra-dense, miniaturized, and high-frequency technology. Mike says his technology is a game changer and will revolutionize UHDI circuit fabrication.
Indium to Showcase High-Reliability Solder Technology at IPC APEX EXPO 2025
03/05/2025 | Indium CorporationIndium Corporation®, a leading materials provider for the electronics assembly market, will feature its high-reliability solder solutions at IPC APEX EXPO 2025, taking place March 18-20 in Anaheim, California.