Graphene Microphone Outperforms Traditional Nickel and Offers Ultrasonic Reach
November 27, 2015 | Institute of PhysicsEstimated reading time: 1 minute
Scientists have developed a graphene based microphone nearly 32 times more sensitive than microphones of standard nickel-based construction.
The researchers, based at the University of Belgrade, Serbia, created a vibrating membrane - the part of a condenser microphone which converts the sound to a current - from graphene, and were able to show up to 15 dB higher sensitivity compared to a commercial microphone, at frequencies up to 11 kHz.
The results are published today, 27th November 2015, in the journal 2D Materials.
"We wanted to show that graphene, although a relatively new material, has potential for real world applications" explains Marko Spasenovic, an author of the paper. "Given its light weight, high mechanical strength and flexibility, graphene just begs to be used as an acoustic membrane material."
The graphene membrane, approximately 60 layers thick, was grown on a nickel foil using chemical vapour deposition, to ensure consistent quality across all the samples.
During membrane production, the nickel foil was etched away and the graphene membrane placed in the same housing as a commercial microphone for comparison. This showed a 15 dB higher sensitivity than the commercial microphone.
The researchers also simulated a 300-layer thick graphene membrane, which shows potential for performance far into the ultrasonic part of the spectrum.
"The microphone performed as well as we hoped it would" adds Spasenovic. "A thicker graphene membrane theoretically could be stretched further, enabling ultrasonic performance, but sadly we're just not quite there yet experimentally."
"At this stage there are several obstacles to making cheap graphene, so our microphone should be considered more a proof of concept" concludes Spasenovic. "The industry is working hard to improve graphene production - eventually this should mean we have better microphones at lower cost."
Suggested Items
Discovery Opens Doors for Cheaper and Quicker Battery Manufacturing
04/23/2025 | PNNLThe discovery centers on sublimation, a commonly known process whereby under the right conditions, a solid turns directly into a vapor. Sublimation is what creates the tail of a comet as it flies by the sun. As the comet’s icy shell heats up, the ice instantly becomes vapor, instead of first melting into liquid water.
Dongguk University Researchers Advance Lithium-Ion Battery Technology with Hybrid Anode Material
04/14/2025 | PRNewswireResearchers from Dongguk University have achieved a significant breakthrough in lithium-ion battery technology by developing a novel hybrid anode material.
Uyemura Announces Six Sigma Graduates
04/02/2025 | UyemuraDr. Patrick Valentine, Technical & Lean Six Sigma Manager and Six Sigma Master Black Belt, announces the completion of Lean Six Sigma Black Belt training by 4 members of Uyemura’s professional staff.
ICT Spring Seminar: Nickel Not Welcome Here
03/12/2025 | Pete Starkey, I-Connect007After a miserable, dull, and damp English winter, a really pleasant nearly spring day with the sun shining and daffodils in bloom greeted delegates to the Institute of Circuit Technology Spring Seminar at Puckrup Hall near Tewkesbury, March 5, in Gloucestershire, UK.
Connect the Dots: Designing for Reality—Surface Finish
01/29/2025 | Matt Stevenson -- Column: Connect the DotsIn the previous episode of I-Connect007’s On the Line with… podcast, we discussed the solder mask and legend process, one of the final steps in the PCB manufacturing process. The board is nearly complete. We just need to wrap up production by applying a surface finish to protect the copper from oxidation and facilitate soldering components onto the board.