Spin Current on Topological Insulator Detected Electrically at Room Temperature
December 8, 2015 | CHALMERS UNIVERSITY OF TECHNOLOGYEstimated reading time: 2 minutes
Researchers at Chalmers University of Technology have for the first time reported the electrical detection of spin current on topological insulator surfaces at room temperature by employing a ferromagnetic detector. The findings have been published in the journal Nano Letters.
New state of matter - “topological insulators”
Solid-state materials were conventionally divided into three different classes such as conductors, semiconductors and insulators. Recently, a new class of materials has been proposed and realized, called “topological insulators”, where both the insulating and conducting properties can co-exist in the same material. Topological insulators are insulators inside the bulk, but are conducting on their surfaces with less resistance than the conventional materials. This is possible due to their uniquely strong interaction between electrons’ spin and orbital angular momentum with their time reversal symmetry. The interaction is so strong that the spin angular momentum of the electrons is locked perpendicular to their momentum and generates a spontaneous spin polarized current on the surfaces of topological insulators by applying an electric field. These spin polarized conducting electrons on the surface have no mass and are extremely robust against most perturbations from defects or impurities and can enable the propagation of dissipationless spin currents.
Detection of spin current on “topological insulators”
The researchers from Chalmers detected the surface spin current electrically on a topological insulator called bismuth selenide (Bi2Se3) for the first time at room temperature employing ferromagnetic tunnel contacts. Such contacts are known to be very sensitive to spin polarization and probe the Bi2Se3 surface by measuring the magnetoresistance due to parallel and anti-parallel alignment of the spin current and the ferromagnet magnetization direction.
“The key factors for these room temperature results are good quality topological insulator crystals and spin sensitive ferromagnetic tunnel contacts carefully prepared by clean room nanofabrication”, explains Dr. André Dankert, the lead author of the paper.
Earlier reports in this research field were limited only to measurements at cryogenic temperatures. From the results on the magnitude of the spin signal, its sign, and control experiments, using different measurement configurations, angles and interface conditions, the author’s rule out other known physical effects.
“Our results show the electrical accessibility of spin currents on topological insulator surfaces up to room temperature and pave the way for further developments, which can be useful for spin based information processing in the future”, says associate professor Saroj Dash, who leads the research group.
However, Saroj Dash cautions that the research on development of these new class materials and measurement techniques are still in its early stage and more experiments are required for further understanding.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Curing and Verification in PCB Shadow Areas
09/17/2025 | Doug Katze, DymaxDesign engineers know a simple truth that often complicates electronics manufacturing: Light doesn’t go around corners. In densely populated PCBs, adhesives and coatings often fail to fully cure in shadowed regions created by tall ICs, connectors, relays, and tight housings.
Marcy’s Musings: Advancing the Advanced Materials Discussion
09/17/2025 | Marcy LaRont -- Column: Marcy's MusingsAs the industry’s most trusted global source of original content about the electronics supply chain, we continually ask you about your concerns, what you care about, and what you most want to learn about. Your responses are insightful and valuable. Thank you for caring enough to provide useful feedback and engage in dialogue.
September 2025 PCB007 Magazine: The Future of Advanced Materials
09/16/2025 | I-Connect007 Editorial TeamMoore’s Law is no more, and the advanced material solutions being developed to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.