Army Researchers Developing Self-righting for Robots
December 8, 2015 | U.S. ArmyEstimated reading time: 6 minutes
When Kessens returned home, he looked into the scientific literature on what has been already done with self-righting robots.
"I found several solutions, each for a specific robot," he said. "But the Army has several types of systems, and new systems will come out. I wanted to be able to develop a general framework for creating a self-righting solution for any robot. That includes tracked robots, legged robots, flying robots, and also very small robots that don't have a lot of memory or processing power. My work has been aimed at developing a framework that can be applied to any robot. You give me a robot, and I give you a self-righting solution for the robot, assuming it is physically possible."
Kessens said that many times when a robot flips over in an operational environment, the user - the Soldier - can't see the robot, so he has no way of knowing what way the robot is actually sitting on the ground.
"It can be really disorienting when the robot flips over and the camera is staring straight at the sky or the ground, and the operator might not have a good idea of how the robot is configured, which could make it challenging to make the robot return to its upright state," Kessens said.
So Kessens has developed software that, when coupled with information about how a specific robot is designed, generates a set of instructions the robot can use to flip itself back upright.
The software Kessens has designed does not run on the robot. Rather, the software runs on a separate computer, and develops an array of solutions the robot can use to flip itself upright, based on what orientation it might find itself in. Those solutions are then loaded into the robot, and it takes that set of instructions with it wherever it goes.
"One of the nice things about the framework I've been developing is that it takes pre-processed plans and distills them down to something that doesn't take much memory or processing power," he said. "It runs before the robot ever hits the field."
The smallest robots might not have on board the processing power to calculate their own self-righting solutions on the fly. But with Kessens' idea, even small robots with limited memory and processing power could carry onboard with them a set of already-developed self-righting solutions to get themselves back in the game.
When a robot flips over, then it can assess its orientation, reference the set of instructions it has for that particular situation, and then use its own flippers, wheels or arms to turn itself upright again and get on with its mission.
"I found several solutions, each for a specific robot," he said. "But the Army has several types of systems, and new systems will come out. I wanted to be able to develop a general framework for creating a self-righting solution for any robot. That includes tracked robots, legged robots, flying robots, and also very small robots that don't have a lot of memory or processing power. My work has been aimed at developing a framework that can be applied to any robot. You give me a robot, and I give you a self-righting solution for the robot, assuming it is physically possible."
Kessens said that many times when a robot flips over in an operational environment, the user - the Soldier - can't see the robot, so he has no way of knowing what way the robot is actually sitting on the ground.
"It can be really disorienting when the robot flips over and the camera is staring straight at the sky or the ground, and the operator might not have a good idea of how the robot is configured, which could make it challenging to make the robot return to its upright state," Kessens said.
So Kessens has developed software that, when coupled with information about how a specific robot is designed, generates a set of instructions the robot can use to flip itself back upright.
The software Kessens has designed does not run on the robot. Rather, the software runs on a separate computer, and develops an array of solutions the robot can use to flip itself upright, based on what orientation it might find itself in. Those solutions are then loaded into the robot, and it takes that set of instructions with it wherever it goes.
"One of the nice things about the framework I've been developing is that it takes pre-processed plans and distills them down to something that doesn't take much memory or processing power," he said. "It runs before the robot ever hits the field."
The smallest robots might not have on board the processing power to calculate their own self-righting solutions on the fly. But with Kessens' idea, even small robots with limited memory and processing power could carry onboard with them a set of already-developed self-righting solutions to get themselves back in the game.
When a robot flips over, then it can assess its orientation, reference the set of instructions it has for that particular situation, and then use its own flippers, wheels or arms to turn itself upright again and get on with its mission.
Page 2 of 3
Suggested Items
Datest Expands Presence in the Upper Midwest with Omni-Tec Partnership
05/05/2025 | DatestDatest, a trusted leader in advanced testing, engineering, inspection, and failure analysis services, is proud to announce its partnership with Gary Krieg of Omni-Tec, Inc. as its official sales representative in the Upper Midwest.
Cadence Expands Design IP Portfolio Optimized for Intel 18A and Intel 18A-P Technologies, Advancing AI, HPC and Mobility Applications
05/01/2025 | Cadence Design SystemsCadence announced a significant expansion of its portfolio of design IP optimized for Intel 18A and Intel 18A-P technologies and certification of Cadence® digital and analog/custom design solutions for the latest Intel 18A process design kit (PDK).
Safran Invests in mirSense, a French Startup Pioneering Quantum-cascade Lasers
04/30/2025 | SafranSafran, through its Safran Corporate Ventures investment subsidiary, has invested in mirSense, a French startup specializing in quantum-cascade lasers (QCLs).
Vuzix Acquires Advanced Waveguide R&D Facility in Silicon Valley to Strengthen Partnerships with Big Tech OEMs/ODMs
04/29/2025 | PRNewswireVuzix Corporation, a leading supplier of smart glasses, waveguides, and Augmented Reality (AR) technologies, today announced the acquisition of an advanced waveguide R&D facility in Milpitas, California.
NEXT Semiconductor Technologies Collaborates with BAE Systems to Develop Next Generation Space-Qualified Chips
04/28/2025 | PRNewswireNEXT Semiconductor Technologies is collaborating with BAE Systems to accelerate the insertion of its latest ultra-wideband antenna processor units (APUs) into high-performing radiation-hardened electronic subsystems to support future space missions.
Copyright © 2025 I-Connect007 | IPC Publishing Group Inc. All rights reserved.
Log in