Using Atoms to Turn Optical Nanofiber Guided Light On and Off
December 9, 2015 | Okinawa Institute of Science and Technology (OIST) Graduate UniversityEstimated reading time: 3 minutes
Researchers in the Light-Matter Interactions Unit led by Professor Síle Nic Chormaic at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed an on-off switch with ultrathin optical fibers, which could be used for data transfer in the future. This research was published in the New Journal of Physics.
0101000001101000011110010111001101101001011000110111001100100000011010010111001100100000011001100111010101101110 means "Physics is fun" in binary code. Computers translate every letter, number, sign, space, image and sound to a set of 8 ones and zeros. For example, 01010000 corresponds to the letter P. While you type, your computer transfers your words to another distant computer by sending a series of ones and zeros encoded in light through standard optical fibers. Switching the light beam on and off very quickly generates the ones and zeros. These bits of information are converted to electronic signals at a node, usually a router or server, and finally appear as text on the screen of your recipient. While this is the classical way of transferring information online, OIST researchers are exploring more efficient ways of transferring data, using the quantum properties of light and matter. They have managed to create an on/off switch based on the quantum characteristics of rubidium atoms in the presence of light of different wavelengths. This proof-of-concept system could be used as a building block in a quantum network, the future of our internet.
The OIST team's experimental setup consists of two lasers that produce light at different wavelengths, an optical nanofiber used to guide light, and rubidium atoms trapped around it. The peculiarity of optical nanofibers is their super-thin diameter. For this study the diameter was 350 nanometers, about 300 times thinner than the thickness of a sheet of paper. The diameter is even smaller than the wavelength of the light guided by the fiber. Some of the light, therefore, leaks outside the nanofiber and interacts with the rubidium atoms that are trapped around it. These atoms can function as a quantum node, a redistribution point of a network, the equivalent of today's servers.
Page 1 of 2
Suggested Items
Panasonic Avionics Completes Multi-Orbit Network Optimization Following Seamless Leo / Geo Switching in Flight
04/28/2025 | Panasonic AvionicsPanasonic Avionics Corporation (Panasonic Avionics), a leading provider of in-flight entertainment and connectivity (IFEC) solutions, has announced the successful optimization of its multi-orbit satellite network following switching between LEO and GEO networks in its flight test program.
QD-OLED to Account for 73% of OLED Monitor Shipments in 2025, Driven by Advancing Technology and New Products
04/16/2025 | TrendForceTrendForce’s latest investigations reveal that ongoing advancements in OLED displays are propelling the growth of QD-OLED monitor shipments. QD-OLED’s share of OLED monitor shipments is expected to rise from 68% in 2024 to 73% in 2025, highlighting its strong competitiveness in the high-end monitor market.
TDK Demonstrates the World's First ‘Spin Photo Detector’ Capable of 10X Data Transmission Speeds for the Next Generation of AI
04/16/2025 | PRNewswireThis new device is expected to be a key driver for implementing photoelectric conversion technology that boosts data transmission and data processing speed, particularly in AI applications, while simultaneously reducing power consumption.
Satair, RTX’s Collins Aerospace Extend 50-year Relationship
04/14/2025 | Collins AerospaceSatair and Collins Aerospace, an RTX business, have signed a four-year extension of their cabin interior parts distribution agreement, continuing a relationship that has spanned more than 50 years.
The World's Smallest PPG Sensor Head
04/04/2025 | BUSINESS WIRESCIVAX Corporation and TSLC Corporation, a SemiLEDs Corporation wholly owned company announced that SCIVAX+TSLC have developed the world's smallest PPG (PhotoPlethysmoGraphy)* sensor head, which will be presented at the display related technology exhibition ”Touch Taiwan” to be held in Taipei, Taiwan from April 16 to 18, 2025. The samples of the PPG sensor head for evaluation will begin in April 2025.