Using Atoms to Turn Optical Nanofiber Guided Light On and Off
December 9, 2015 | Okinawa Institute of Science and Technology (OIST) Graduate UniversityEstimated reading time: 3 minutes
Researchers in the Light-Matter Interactions Unit led by Professor Síle Nic Chormaic at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed an on-off switch with ultrathin optical fibers, which could be used for data transfer in the future. This research was published in the New Journal of Physics.
0101000001101000011110010111001101101001011000110111001100100000011010010111001100100000011001100111010101101110 means "Physics is fun" in binary code. Computers translate every letter, number, sign, space, image and sound to a set of 8 ones and zeros. For example, 01010000 corresponds to the letter P. While you type, your computer transfers your words to another distant computer by sending a series of ones and zeros encoded in light through standard optical fibers. Switching the light beam on and off very quickly generates the ones and zeros. These bits of information are converted to electronic signals at a node, usually a router or server, and finally appear as text on the screen of your recipient. While this is the classical way of transferring information online, OIST researchers are exploring more efficient ways of transferring data, using the quantum properties of light and matter. They have managed to create an on/off switch based on the quantum characteristics of rubidium atoms in the presence of light of different wavelengths. This proof-of-concept system could be used as a building block in a quantum network, the future of our internet.
The OIST team's experimental setup consists of two lasers that produce light at different wavelengths, an optical nanofiber used to guide light, and rubidium atoms trapped around it. The peculiarity of optical nanofibers is their super-thin diameter. For this study the diameter was 350 nanometers, about 300 times thinner than the thickness of a sheet of paper. The diameter is even smaller than the wavelength of the light guided by the fiber. Some of the light, therefore, leaks outside the nanofiber and interacts with the rubidium atoms that are trapped around it. These atoms can function as a quantum node, a redistribution point of a network, the equivalent of today's servers.
Page 1 of 2
Suggested Items
Hon Hai Research Institute Partners with Taiwan Academic Research Institute and KAUST to Participate in CLEO 2025
05/30/2025 | FoxconnThe research team of the Semiconductor Division of Hon Hai Research Institute, together with the research teams of National Taiwan University and King Abdullah University of Science and Technology in Saudi Arabia, has successfully made breakthroughs in multi-wavelength μ -LED technology to achieve high-speed visible light communication and optical interconnection between chips.
ICEFlight to Accelerate Maturation of Cryogenic Technologies for Hydrogen-Powered Flight
05/27/2025 | GKN AerospaceGKN Aerospace is one of the project partners in ICEFlight (Innovative Cryogenic Electric Flight), a project aiming to contribute to the development of hydrogen-powered flight.
Vertical Aerospace Makes Aviation History with Piloted eVTOL Flight in Open Airspace
05/27/2025 | BUSINESS WIREVertical Aerospace, a global aerospace and technology company that is pioneering electric aviation, announced it has made European aviation history with the first-ever piloted wingborne flight of a winged electric vertical take-off and landing (eVTOL) aircraft in open airspace.
Dymax to Showcase Light-Cure Solutions at The European Battery Show 2025
05/23/2025 | Dymax CorporationDymax, a global manufacturer of rapid light-curing materials and equipment, will exhibit at The European Battery Show 2025 in Stand 4-C60
Northrop Grumman Navigation Technology Completes Hypersonic Test Flights
05/14/2025 | Northrop GrummanNorthrop Grumman Corporation successfully completed two test flights of its Advanced Hypersonic Technology Inertial Measurement Unit at hypersonic speed, leveraging Stratolaunch’s reusable hypersonic airplane, Talon-A.