Stanford-led Skyscraper-style Chip Design Boosts Electronic Performance by Factor of a Thousand
December 11, 2015 | Stanford UniversityEstimated reading time: 4 minutes
For decades, engineers have designed computer systems with processors and memory chips laid out like single-story structures in a suburb. Wires connect these chips like streets, carrying digital traffic between the processors that compute data and the memory chips that store it.
But suburban-style layouts create long commutes and regular traffic jams in electronic circuits, wasting time and energy.
That is why researchers from three other universities are working with Stanford engineers, including Associate Professor Subhasish Mitra and Professor H.-S. Philip Wong, to create a revolutionary new high-rise architecture for computing.
In Rebooting Computing, a special issue of the IEEE Computer journal, the team describes its new approach as Nano-Engineered Computing Systems Technology, or N3XT.
N3XT will break data bottlenecks by integrating processors and memory like floors in a skyscraper and by connecting these components with millions of "vias," which play the role of tiny electronic elevators. The N3XT high-rise approach will move more data, much faster, using far less energy, than would be possible using low-rise circuits.
"We have assembled a group of top thinkers and advanced technologies to create a platform that can meet the computing demands of the future," Mitra said.
Shifting electronics from a low-rise to a high-rise architecture will demand huge investments from industry – and the promise of big payoffs for making the switch.
"When you combine higher speed with lower energy use, N3XT systems outperform conventional approaches by a factor of a thousand," Wong said.
To enable these advances, the N3XT team uses new nano-materials that allow its designs to do what can't be done with silicon – build high-rise computer circuits.
"With N3XT the whole is indeed greater than the sum of its parts," said co-author and Stanford electrical engineering Professor Kunle Olukotun, who is helping optimize how software and hardware interact.
Page 1 of 3
Suggested Items
2025 COMPUTEX Compal Unveils 'The Race is On' Strategy During Forum Session
05/23/2025 | Compal Electronics Inc.As AI models and computing density continue to grow at an exponential rate, the data center industry is entering a new era where cooling capacity has become the next competitive threshold.
HBM4 Raises the Bar on Manufacturing Complexity, Premium Expected to Exceed 30%
05/22/2025 | TrendForceTrendForce's latest findings reveal that demand for AI servers continues to accelerate the development of HBM technologies, with the three major suppliers actively advancing their HBM4 product roadmaps.
SEMI, Purdue University Launch AI and Data Analysis Online Courses
05/22/2025 | SEMISEMI, the industry association serving the global semiconductor and electronics design and manufacturing supply chain, today announced it has partnered with Purdue University to launch an online course series focused on artificial intelligence (AI) and data analysis techniques for the semiconductor industry.
ASMPT Presents Central Platform for Data Exchange in Electronics Manufacturing
05/21/2025 | ASMPTWith WORKS Integration, ASMPT SMT Solutions, the market and technology leader in SMT, provides a central integration platform through which all its hardware and software solutions can communicate with each other.
Infineon to Revolutionize Power Delivery Architecture for Future AI Server Racks with NVIDIA
05/21/2025 | InfineonInfineon Technologies AG is revolutionizing the power delivery architecture required for future AI data centers. In collaboration with NVIDIA, Infineon is developing the next generation of power systems based on a new architecture with central power generation of 800 V high-voltage direct current (HVDC).