Neutrons Offer Guide to Getting More Out of Solid-state Lithium-ion Batteries
December 22, 2015 | ORNLEstimated reading time: 4 minutes
Although they don’t currently have as much conductivity, solid-state electrolytes designed for lithium-ion batteries (LIBs) are emerging as a safer alternative to their more prevalent—sometimes flammable—liquid-electrolyte counterparts.
However, a new study conducted at Oak Ridge National Laboratory’s Spallation Neutron Source (SNS), a Department of Energy Office of Science user facility, has revealed promising results that could drastically boost the performance of solid-state electrolytes, and could potentially lead to a safer, even more efficient battery.
Using neutron diffraction techniques via the VULCAN instrument, SNS beam line 7, lead instrument scientist Ke An and his team recently concluded an in-depth study probing the entire structure evolution of doped garnet-type electrolytes during the synthesis process to unravel the mechanism that boosts the lithium-ionic conductivity. Their findings were recently published in the journals Chemistry of Materials and the Journal of Materials Chemistry A.
“The question we want to answer is how can we correlate the material’s structure with its performance,” An said. “Finding an answer to this will be very useful to the materials community, particularly in the field of electrochemical devices like batteries.”
The problem with liquid electrolytes, says An, is that while they can produce high levels of conductivity—which is good—in some cases, they become flammable under high voltages or high temperatures, causing the battery to “explode”—which is obviously very bad.
In general, solid electrolyte-based LIBs consist of two electrodes, a positive and a negative, and an electrolyte in the middle, forming the battery’s core, which facilitates the movement of ions traveling back and forth between the electrodes. In order to achieve a desired level of conductivity in the electrolyte, ions require vacancies in the crystal structure, or tunnels for the ions to “hop” to and from—kind of like connecting the dots.
Lithium lanthanum zirconates, or materials based on Li7La3Zr2O12 with a garnet structure, are favorable for application as electrolytes because they promote fast lithium transport. However, explained An, synthesized garnets often develop unwanted low-conductivity secondary phases, which in some cases can be detrimental to electrolytic performance. Essentially what that means is that useful vacancies for ions to “hop” don’t always develop where designers want them to.
During synthesis, myriad chemical reactions take place as the material goes through several different phases, beginning with the mixing of chemicals or materials, then annealing, or heating the structure for desired performance and consistency, followed by a cool down period in which the structure is hardened. Analyzing what’s going on during each phase would be next to impossible without the use of special instruments and techniques.
Page 1 of 2
Suggested Items
STMicroelectronics Announces Expanded "Lab-in-Fab" Collaboration in Singapore to Advance Piezoelectric MEMS Technology
05/22/2025 | STMicroelectronicsSTMicroelectronics, a global semiconductor leader serving customers across the spectrum of electronics applications, in collaboration with the A*STAR Institute of Microelectronics (A*STAR IME) and ULVAC, announces the expansion of the “Lab-in-Fab” (LiF) in Singapore.
Almonty Joins DARPA Funded Critical Minerals Forum
05/20/2025 | BUSINESS WIREAlmonty Industries Inc., a leading global producer of tungsten concentrate, announced that, upon being invited to join, it has attained membership in the Critical Minerals Forum (CMF), a US Defense Advanced Research Projects Agency (DARPA)-funded not-for-profit trade association dedicated to building resilient and diversified critical minerals supply chains.
Sanmina Announces Acquisition of Data Center Infrastructure Manufacturing Business of ZT Systems from AMD
05/19/2025 | PRNewswireSanmina Corporation, a leading integrated manufacturing solutions company, announced that it has entered into a definitive agreement to acquire the data center infrastructure manufacturing business of ZT Systems, a leading provider of Cloud and AI infrastructure to the world's largest hyperscalers, from AMD.
SEMI North America Advisory Board Welcomes New Member From SACHEM
05/15/2025 | SEMISEMI announced the election of a new member to the SEMI North America Advisory Board (NAAB), Rosemary Steen Hoffman, Chief Executive Officer, SACHEM, Inc., a premier supplier of high-purity, precision-based chemistries.
OSI Systems Receives $7 Million Order for Medical Technology Components
05/13/2025 | BUSINESS WIREOSI Systems, Inc. announced that its Optoelectronics and Manufacturing division has been awarded an order for approximately $7 million to supply essential components for a leading healthcare innovator specializing in patient diagnostic and care applications.