Panasonic Develops Stretchable Resin Film for Stretchable Electronics
December 29, 2015 | Panasonic CorporationEstimated reading time: 5 minutes
1. Soft and stretchable insulating film material that comes with excellent elasticity
Against the backdrop of the development of various wearable devices, there is a growing demand for reduced odd feel from wearing them and more aesthetically pleasing design, as well as for a smaller size and thinner profile. Polyurethane and rubber materials need to overcome challenges associated with adhesion, heat resistance, and embrittlement. Demand is high for a conformable material that is excellent in terms of heat resistance, durability, and workability. Noting the proven performance of conventionally used thermosetting resin[4] and applying the Company's proprietary resin design technology that can add superb elasticity to the material, Panasonic has developed an insulating material made of thermosetting resin, which is, surprisingly, flexible and stretchable. This soft and stretchable insulating film material helps realize electronic devices for wearing or installation at desired locations.
2. Insulating film material capable of relaxing internal stresses arising from stretch, returning to its original shape, and withstanding repeated use
Devices implemented on clothing or worn on the body should be made of materials that withstand repeated use and allow no change in mechanical properties even after repeated deformation (stretch and restore). Generally, materials subjected to repeated stretch and restore would tend to degrade in mechanical strength and recovery performance. Going beyond simple softening, Panasonic employed a unique resin design technology that makes optimal use of the characteristic three-dimensional cross-linked structure[5] of thermosetting resin. By relaxing internal stresses arising from stretch, the newly developed insulating material returns to its original shape and withstands repeated use. This material helps realize electronic devices that remain wearable for an extended period of time.
3. Additional development of a stretchable transparent electrode material and conductive paste along with the insulating material
Devices implemented on clothing or worn on the body must be made of not only stretchable insulating materials, but also soft and stretchable conductive materials. Using a stretchable resin as a base material, Panasonic has also developed a transparent electrode material and conductive paste that remain conductive even after repeated cycles of stretch and restore. The transparent electrode material comprises a thin conductive layer of carbon nanotubes[6] formed on the base material of stretchable resin. The conductive paste was produced by combining the stretchable resin, used as a binder, with silver filler. These materials help realize stretchable display devices and sensors.
Page 2 of 3
Suggested Items
Elephantech: For a Greener Tomorrow
04/16/2025 | Marcy LaRont, PCB007 MagazineNobuhiko Okamoto is the global sales and marketing manager for Elephantech Inc., a Japanese startup with a vision to make electronics more sustainable. The company is developing a metal inkjet technology that can print directly on the substrate and then give it a copper thickness by plating. In this interview, he discusses this novel technology's environmental advantages, as well as its potential benefits for the PCB manufacturing and semiconductor packaging segments.
Trouble in Your Tank: Organic Addition Agents in Electrolytic Copper Plating
04/15/2025 | Michael Carano -- Column: Trouble in Your TankThere are numerous factors at play in the science of electroplating or, as most often called, electrolytic plating. One critical element is the use of organic addition agents and their role in copper plating. The function and use of these chemical compounds will be explored in more detail.
IDTechEx Highlights Recyclable Materials for PCBs
04/10/2025 | IDTechExConventional printed circuit board (PCB) manufacturing is wasteful, harmful to the environment and energy intensive. This can be mitigated by the implementation of new recyclable materials and technologies, which have the potential to revolutionize electronics manufacturing.
Connect the Dots: Stop Killing Your Yield—The Hidden Cost of Design Oversights
04/03/2025 | Matt Stevenson -- Column: Connect the DotsI’ve been in this industry long enough to recognize red flags in PCB designs. When designers send over PCBs that look great on the computer screen but have hidden flaws, it can lead to manufacturing problems. I have seen this happen too often: manufacturing delays, yield losses, and designers asking, “Why didn’t anyone tell me sooner?” Here’s the thing: Minor design improvements can greatly impact manufacturing yield, and design oversights can lead to expensive bottlenecks. Here’s how to find the hidden flaws in a design and avoid disaster.
Real Time with... IPC APEX EXPO 2025: Tariffs and Supply Chains in U.S. Electronics Manufacturing
04/01/2025 | Real Time with...IPC APEX EXPOChris Mitchell, VP of Global Government Relations for IPC, discusses IPC's concerns about tariffs on copper and their impact on U.S. electronics manufacturing. He emphasizes the complexity of supply chains and the need for policymakers to understand their effects.