Mobile 'Electronic Adhesive' Helps Localized Electrons Communications
January 7, 2016 | Ames LaboratoryEstimated reading time: 1 minute
Research performed by U.S. Department of Energy’s Ames Laboratory Associate Scientist Durga Paudyal was recently featured on the cover of the November 13, 2015 issue of Physical Review Letters ("Complex Magnetism of Lanthanide Intermetallics and the Role of their Valence Electrons: Ab Initio Theory and Experiment").
In his paper, Paudyal and coauthors used electronic structure theory to explain how a mobile “electronic adhesive” helps localized electrons communicate and interact with one another.
The research was performed using compounds of gadolinium combined with three nonmagnetic elements: magnesium, zinc and cadmium.
In addition to supporting communications among localized electrons, Paudyal’s research also discovered that the mobile electron adhesive flows up and down the energy scale, thus controlling the electrons near the top. These topmost electrons are the ones responsible for different, yet predictable changes of magnetic order when chemistry, temperature or pressure are changed individually or together.
“This discovery opens up many new opportunities in rare-earth based responsive and permanent magnet materials research,” said Paudyal. “We’ll be able to find out how they behave at working temperatures.”
Other Ames Laboratory scientist authors on the paper included Yaroslav Mudryk, Vitalij Pecharsky and Karl Gschneidner, Jr. The scientists collaborated with lead author Leon Petit from the Daresbury Laboratory in the United Kingdom and Julie Staunton from Warwick University in the United Kingdom.
“We’ve seen a dramatic rise in the use of rare-earth materials as essential elements in everything from smart phones to computers, automobiles, LED and compact fluorescent lights, and color displays in TVs and monitors. These findings are critically important to furthering research related to these materials,” said Gschneidner, who is a senior metallurgist at Ames Laboratory, a Distinguished Professor of materials science and engineering at Iowa State University, and the chief scientist of the Critical Materials Institute.
Suggested Items
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
DuPont Announces Additional Leaders and Company Name for the Intended Spin-Off of the Electronics Business
04/29/2025 | PRNewswireDuPont announced Qnity Electronics, Inc. as the name of the planned independent Electronics public company that will be created through the intended spin-off of its Electronics business.
2024 Global Semiconductor Materials Market Posts $67.5 Billion in Revenue
04/29/2025 | SEMIGlobal semiconductor materials market revenue increased 3.8% to $67.5 billion in 2024, SEMI, the global industry association representing the electronics design and manufacturing supply chain, reported in its Materials Market Data Subscription (MMDS).
New RF Materials Offer Options for RF Designers
04/29/2025 | Andy Shaughnessy, Design007 MagazineThe RF materials arena has changed quite a bit in the past decade. The newest thermoset laminates boast performance numbers that are almost competitive with PTFE, but without the manufacturability challenges. At IPC APEX EXPO this year, I spoke with Brent Mayfield, business development manager at AGC Multi Material America. Brent walked through some recent innovations in RF materials, advances in resin systems, and the many design trade-offs for RF engineers to consider for each material set.
Discovery Opens Doors for Cheaper and Quicker Battery Manufacturing
04/23/2025 | PNNLThe discovery centers on sublimation, a commonly known process whereby under the right conditions, a solid turns directly into a vapor. Sublimation is what creates the tail of a comet as it flies by the sun. As the comet’s icy shell heats up, the ice instantly becomes vapor, instead of first melting into liquid water.