Metamaterial-Enabled Antennas Help Improve Satellite Communications Systems
January 15, 2016 | Pennsylvania State UniversityEstimated reading time: 1 minute
Smaller, lighter weight, better performing and more multifunctional miniature antennas with increased performance may be possible using smart materials, according to Penn State engineers. One particularly promising application of this technology is for satellite communications systems.
These antennas made of metamaterials—manufactured materials that possess exotic properties not usually found in nature—can be integrated with modern digital electronic radios that are software controlled, facilitating a transformative communications system with remarkable frequency and polarization agility.
The engineers, who reported their research in a recent issue of Advanced Electronic Materials, developed a small, functionalized, metamaterial antenna operated by simultaneously tuning components of the metamaterial and the antenna together as a system, said Clinton Scarborough, who worked on this research for his dissertation.
Metamaterials derive their unusual properties from manufactured structures rather than atomic or molecular interactions alone.
"Metamaterial-based antennas often suffer a stigma of impractically narrow operating bandwidths, just like small antennas," said Scarborough. "Radios need to be able to operate over a significant bandwidth, but typically only on a single channel at a time. The laws of physics dictate that a small metamaterial antenna will have a small bandwidth, but modern radios can easily tune the antenna so that it operates on whatever channel the radio is currently using, giving comparable performance to a large broadband antenna while taking up less space and even providing new capabilities."
The engineers developed a tunable metamaterial that allows them to tune a miniaturized antenna with narrow instantaneous bandwidths across an entire communications band depending on the channel in use, said Douglas H. Werner, John L. and Genevieve H. McCain Chair Professor of Electrical Engineering.
"Tuning the metamaterial and antenna in tandem provides a dynamic operating channel, with a tunable, nearly-arbitrary polarization response as an added benefit," said Werner. "By employing our functionalized metamaterial concepts, we have been able to devise a way to dynamically tune the frequency response and polarization for the antenna, while, at the same time, providing a pathway to scaling the designs to low frequencies."
Many research groups are working on different kinds of metamaterial-enabled antennas, but the one area that has been quite challenging is figuring out a way to scale these metamaterial and associated antenna structures down to operate at lower frequencies while maintaining a practical physical size and weight for the resulting integrated device—in general, the lower the frequency, the bigger the antenna, said Werner.
Suggested Items
Symposium Review: Qnity, DuPont, and Insulectro Forge Ahead with Advanced Materials
07/02/2025 | Barb Hockaday, I-Connect007In a dynamic and informative Innovation Symposium hosted live and on Zoom on June 25, 2025, representatives from Qnity (formerly DuPont Electronics), DuPont, and Insulectro discussed the evolving landscape of flexible circuit materials. From strategic corporate changes to cutting-edge polymer films, the session offered deep insight into design challenges, reliability, and next-gen solutions shaping the electronics industry.
Indium Corporation Expert to Present on Automotive and Industrial Solder Bonding Solutions at Global Electronics Association Workshop
06/26/2025 | IndiumIndium Corporation Principal Engineer, Advanced Materials, Andy Mackie, Ph.D., MSc, will deliver a technical presentation on innovative solder bonding solutions for automotive and industrial applications at the Global Electronics A
Gorilla Circuits Elevates PCB Precision with Schmoll’s Optiflex II Alignment System
06/23/2025 | Schmoll MaschinenGorilla Circuits, a leading PCB manufacturer based in Silicon Valley, has enhanced its production capabilities with the addition of Schmoll Maschinen’s Optiflex II Post-Etch Punch system—bringing a new level of precision to multilayer board fabrication.
Day 1: Cutting Edge Insights at the EIPC Summer Conference
06/17/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) Summer Conference took place this year in Edinburgh, Scotland, June 3-4. This is the second of three articles on the conference. The other two cover the keynote speeches and Day 2 of the technical conference. Below is a recap of the first day’s sessions.
American Made Advocacy: Supporting the Entire PCB Ecosystem—Materials to OEMs
06/17/2025 | Shane Whiteside -- Column: American Made AdvocacyWith the addition of RTX to PCBAA’s membership roster, we now represent the interests of companies in the entire PCB ecosystem. From material providers to OEMs, the insights of our collective members help us educate, advocate, and support legislation and policy favorable to America’s microelectronics manufacturers. The industry veterans who lead these companies provide valuable perspective, and their accumulated wisdom makes us an even stronger association.