Researchers Outline Physics of Metal 3D Printing
January 19, 2016 | Lawrence Livermore National LaboratoryEstimated reading time: 3 minutes
While the most common method of metal 3D printing is growing exponentially, moving forward from producing prototypes to manufacturing critical parts will be possible only by reaching a fundamental understanding of the complex physics behind the process, according to a new paper authored by Lawrence Livermore National Laboratory (LLNL) researchers.
The powder bed fusion process, also known as selective laser melting (SLM), requires thin layers of a metal powder to be spread across a build area, where they are fused by a laser or electron beam based on a 3D computer-aided design (CAD) model. The process is repeated until a part is produced, layer-by-layer from the bottom up.
Even though the method has quickly progressed into a production technology, 3D printing of metal parts (also known as metal additive manufacturing) for industries such as aerospace and health care is hampered, according to LLNL’s Wayne King, by a lack of confidence in the finished parts. This hurdle, he said, can be overcome by a combination of physics-based modeling and high-performance computing to determine the optimal parameters for building each part.
“If we want to put parts into critical applications, they have to meet quality criteria. Our project is focused on developing a science-based understanding of the additive manufacturing process to build confidence in the quality of parts,” said King, leader of the Lab’s Accelerated Certification of Additively Manufactured Metals Project (ACAMM). “We want to accelerate certification and qualification to take advantage of the flexibility that metal additive manufacturing gives us. Ideally, our plants would like to build a part on Monday that can be qualified and on the same machine on Tuesday build a different part that can also be qualified.”
In a paper published in the January edition of Applied Physics Reviews (link is external) that was commissioned by the publication, King and his team describe two physics-based models for the selective laser melting process on scales varying from the particulate powder to the whole part or component.
Page 1 of 2
Suggested Items
GKN Aerospace Delivers First High Voltage EWIS System for Clean Aviation’s SWITCH Project
06/16/2025 | GKN AerospaceGKN Aerospace has completed and delivered the first high voltage Electrical Wiring Interconnection System (EWIS) for the Clean Aviation SWITCH project.
RTX's Collins Aerospace Expands Aircraft Electrification Capabilities in Europe
06/12/2025 | RTXCollins Aerospace, an RTX business, expanded its aircraft electrification capabilities with the introduction of a new engineering center of excellence in Wolverhampton, UK, and a new electric thrust reverser actuation systems (elecTRAS) production line in Colomiers, France.
Facing the Future: Investing in R&D to Stay Competitive
06/10/2025 | Prashant Patel -- Column: Facing the FutureIn the PCB industry, staying ahead of the competition requires more than production efficiency; it demands continuous innovation, a firm commitment to research and development (R&D), and a proactive approach to emerging technologies. Companies that invest in R&D are better positioned to develop advanced solutions, enhance product reliability, and adapt to the dynamic demands of the electronics industry.
TT Electronics Secures £20 Million in Aerospace and Defence Contracts as European Programmes Accelerate
06/06/2025 | TT ElectronicsTT Electronics has been awarded more than £20 million in new and renewed defence contracts, marking a major step forward in its contribution to Europe’s rapidly evolving defence landscape.
Elma Electronic Bolsters Quality Management Company-wide with Added AS9100:D and ISO9001:2015 Certifications
06/02/2025 | Elma ElectronicElma Electronic now includes AS9100:D and ISO 9001:2015 certifications at its Horsham, Pa. manufacturing facility, earning the company a multiple site accreditation designation.