Researchers Outline Physics of Metal 3D Printing
January 19, 2016 | Lawrence Livermore National LaboratoryEstimated reading time: 3 minutes
The part-scale model simulates the 3D printing of full-scale parts, calculating the effects of stress and heat arising from a given type of metal and laser process parameters. It could improve predictions of deformation and stresses during printing that can lead to part failure, as well as help improve quality, eliminating much of the guesswork involved in creating new parts.
“By modeling the fabrication you can see what is the aggregate behavior of the part and essentially build in compensations. If there is warping, we can warp the target geometry to arrive at the correct net shape,” said Bob Ferencz, LLNL’s division leader for Computational Engineering, and co-author on the paper. “The benefit of simulations is that you can slow down the process and hopefully that informs you as to mitigations for the mechanisms you see as the cause of the failure.”
Combining the physics models with data-mining technologies and uncertainty analyses could optimize metal parts without the cost of multiple experiments, and aid in more widespread adoption of metal 3D printing, the researchers said.
“These models will be a big step forward toward getting away from the experience base and getting the science base behind it,” King said. “We’re talking about getting to the place of saying ‘just press print’ for metal. It could broadly impact the way people apply metal additive manufacturing.”
Other LLNL scientists and researchers contributing to the three-year study include Neil Hodge, Chandrika Kamath, Saad Khairallah and Alexander Rubenchik.
The Laboratory Directed Research and Development (LDRD) Program at LLNL funded the team’s work.